1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
//! Parsing and writing of the `glyf` table.
//!
//! > This table contains information that describes the glyphs in the font in the TrueType outline
//! > format. Information regarding the rasterizer (scaler) refers to the TrueType rasterizer.
//!
//! — <https://docs.microsoft.com/en-us/typography/opentype/spec/glyf>

use core::convert::TryFrom;
use core::iter;
use alloc::vec::Vec;

use bitflags::bitflags;
use itertools::Itertools;
use log::warn;

use crate::binary::read::{ReadBinary, ReadBinaryDep, ReadCtxt, ReadFrom, ReadScope};
use crate::binary::write::{WriteBinary, WriteBinaryDep, WriteContext};
use crate::binary::{word_align, I16Be, U16Be, I8, U8};
use crate::error::{ParseError, WriteError};
use crate::tables::loca::{owned, LocaTable};
use crate::tables::{F2Dot14, IndexToLocFormat};

bitflags! {
    #[rustfmt::skip]
    pub struct SimpleGlyphFlag: u8 {
        const ON_CURVE_POINT                       = 0b00000001;
        const X_SHORT_VECTOR                       = 0b00000010;
        const Y_SHORT_VECTOR                       = 0b00000100;
        const REPEAT_FLAG                          = 0b00001000;
        const X_IS_SAME_OR_POSITIVE_X_SHORT_VECTOR = 0b00010000;
        const Y_IS_SAME_OR_POSITIVE_Y_SHORT_VECTOR = 0b00100000;
    }
}

bitflags! {
    pub struct CompositeGlyphFlag: u16 {
        /// Bit 0: If this is set, the arguments are 16-bit (uint16 or int16); otherwise, they are
        /// bytes (uint8 or int8).
        const ARG_1_AND_2_ARE_WORDS = 0x0001;
        /// Bit 1: If this is set, the arguments are signed xy values; otherwise, they are unsigned
        /// point numbers.
        const ARGS_ARE_XY_VALUES = 0x0002;
        /// Bit 2: For the xy values if the preceding is true.
        const ROUND_XY_TO_GRID = 0x0004;
        /// Bit 3: This indicates that there is a simple scale for the component. Otherwise, scale = 1.0.
        const WE_HAVE_A_SCALE = 0x0008;
        /// Bit 4: Reserved, set to 0
        /// Bit 5: Indicates at least one more glyph after this one.
        const MORE_COMPONENTS = 0x0020;
        /// Bit 6: The x direction will use a different scale from the y direction.
        const WE_HAVE_AN_X_AND_Y_SCALE = 0x0040;
        /// Bit 7: There is a 2 by 2 transformation that will be used to scale the component.
        const WE_HAVE_A_TWO_BY_TWO = 0x0080;
        /// Bit 8: Following the last component are instructions for the composite character.
        const WE_HAVE_INSTRUCTIONS = 0x0100;
        /// Bit 9: If set, this forces the aw and lsb (and rsb) for the composite to be equal to
        /// those from this original glyph. This works for hinted and unhinted characters.
        const USE_MY_METRICS = 0x0200;
        /// Bit 10: If set, the components of the compound glyph overlap.
        ///
        /// Use of this flag is not required in OpenType — that is, it is valid to have components
        /// overlap without having this flag set. It may affect behaviors in some platforms,
        /// however. (See Apple’s specification for details regarding behavior in Apple platforms.)
        /// When used, it must be set on the flag word for the first component. See additional
        /// remarks, above, for the similar OVERLAP_SIMPLE flag used in simple-glyph descriptions.
        const OVERLAP_COMPOUND = 0x0400;
        /// Bit 11: The composite is designed to have the component offset scaled.
        const SCALED_COMPONENT_OFFSET = 0x0800;
        /// Bit 12: The composite is designed not to have the component offset scaled.
        const UNSCALED_COMPONENT_OFFSET = 0x1000;
        // 0xE010 	Reserved 	Bits 4, 13, 14 and 15 are reserved: set to 0.
    }
}

/// `glyf` table
///
/// <https://docs.microsoft.com/en-us/typography/opentype/spec/glyf>
#[derive(Debug, PartialEq)]
pub struct GlyfTable<'a> {
    pub records: Vec<GlyfRecord<'a>>,
}

#[derive(Debug, PartialEq, Clone)]
pub enum GlyfRecord<'a> {
    Empty,
    Present(ReadScope<'a>),
    Parsed(Glyph<'a>),
}

#[derive(Debug, PartialEq, Clone)]
pub struct Glyph<'a> {
    pub number_of_contours: i16,
    pub bounding_box: BoundingBox,
    pub data: GlyphData<'a>,
}

#[derive(Debug, PartialEq, Clone)]
pub enum GlyphData<'a> {
    Simple(SimpleGlyph),
    Composite {
        glyphs: Vec<CompositeGlyph>,
        instructions: &'a [u8],
    },
}

#[derive(Debug, PartialEq, Clone)]
pub struct SimpleGlyph {
    pub end_pts_of_contours: Vec<u16>,
    pub instructions: Vec<u8>,
    pub flags: Vec<SimpleGlyphFlag>,
    pub coordinates: Vec<Point>,
}

#[derive(Debug, PartialEq, Clone)]
pub struct CompositeGlyph {
    pub flags: CompositeGlyphFlag,
    pub glyph_index: u16,
    pub argument1: CompositeGlyphArgument,
    pub argument2: CompositeGlyphArgument,
    pub scale: Option<CompositeGlyphScale>,
}

#[derive(Debug, PartialEq, Clone)]
pub enum CompositeGlyphArgument {
    U8(u8),
    I8(i8),
    U16(u16),
    I16(i16),
}

#[derive(Debug, PartialEq, Clone)]
pub enum CompositeGlyphScale {
    Scale(F2Dot14),
    XY { x_scale: F2Dot14, y_scale: F2Dot14 },
    Matrix([[F2Dot14; 2]; 2]),
}

pub struct CompositeGlyphs {
    pub glyphs: Vec<CompositeGlyph>,
    pub have_instructions: bool,
}

#[derive(Debug, Clone, Copy, PartialEq)]
pub struct Point(pub i16, pub i16);

#[derive(Debug, PartialEq, Clone)]
pub struct BoundingBox {
    pub x_min: i16,
    pub x_max: i16,
    pub y_min: i16,
    pub y_max: i16,
}

impl<'a> ReadBinaryDep<'a> for GlyfTable<'a> {
    type Args = &'a LocaTable<'a>;
    type HostType = Self;

    fn read_dep(ctxt: &mut ReadCtxt<'a>, loca: Self::Args) -> Result<Self, ParseError> {
        if loca.offsets.len() < 2 {
            return Err(ParseError::BadIndex);
        }

        let glyph_records = loca
            .offsets
            .iter()
            .tuple_windows()
            .map(|(start, end)| match end.checked_sub(start) {
                Some(0) => Ok(GlyfRecord::Empty),
                Some(length) => {
                    let offset = usize::try_from(start)?;
                    let glyph_scope = ctxt.scope().offset_length(offset, usize::try_from(length)?);
                    match glyph_scope {
                        Ok(scope) => Ok(GlyfRecord::Present(scope)),
                        Err(ParseError::BadEof) => {
                            // The length specified by `loca` is beyond the end of the `glyf`
                            // table. Try parsing the glyph without a length limit to see if it's
                            // valid. This is a workaround for a font where the last `loca` offset
                            // was incorrectly 1 byte beyond the end of the `glyf` table but the
                            // actual glyph data was valid.
                            warn!("glyph length out of bounds, trying to parse");
                            let mut glyph = GlyfRecord::Present(ctxt.scope().offset(offset));
                            glyph.parse()?;
                            Ok(glyph)
                        }
                        Err(err) => Err(err),
                    }
                }
                None => Err(ParseError::BadOffset),
            })
            .collect::<Result<Vec<_>, _>>()?;

        Ok(GlyfTable {
            records: glyph_records,
        })
    }
}

impl<'a> WriteBinaryDep<Self> for GlyfTable<'a> {
    type Output = owned::LocaTable;
    type Args = IndexToLocFormat;

    /// Write this glyf table into `ctxt`.
    ///
    /// ## A Note About Padding
    ///
    /// On the [loca table documentation](https://docs.microsoft.com/en-us/typography/opentype/spec/loca#long-version)
    /// at the bottom it states:
    ///
    /// > Note that the local offsets should be 32-bit aligned. Offsets which are not 32-bit
    /// > aligned may seriously degrade performance of some processors.
    ///
    /// On the [Recommendations for OpenType Fonts](https://docs.microsoft.com/en-us/typography/opentype/spec/recom#loca-table)
    /// page it states:
    ///
    /// > We recommend that local offsets should be 16-bit aligned, in both the short and long
    /// > formats of this table.
    ///
    /// On [Apple's loca documentation](https://developer.apple.com/fonts/TrueType-Reference-Manual/RM06/Chap6loca.html)
    /// it says:
    ///
    /// > The glyph data is always word aligned.
    ///
    /// Elsewhere in the Apple docs they refer to long as 32-bits, so assuming word here means
    /// 16-bits.
    ///
    /// [An issue](https://github.com/MicrosoftDocs/typography-issues/issues/241) was raised against
    /// Microsoft's docs regarding this.
    /// Behdad Esfahbod [commented](https://github.com/MicrosoftDocs/typography-issues/issues/241#issuecomment-495265379):
    ///
    /// > All the requirements should be removed since 2019.
    /// >
    /// > In reality, in the short format, you are forced to do 16-bit alignment because of how
    /// > offsets are stored. In the long format, use alignment 1. We've been doing that in
    /// > fonttools for years and never ever heard a complaint whatsoever.
    ///
    /// So with this in mind we implement 16-bit alignment when `index_to_loc_format` is 0,
    /// and no alignment/padding otherwise.
    fn write_dep<C: WriteContext>(
        ctxt: &mut C,
        table: GlyfTable<'a>,
        index_to_loc_format: IndexToLocFormat,
    ) -> Result<Self::Output, WriteError> {
        let mut offsets: Vec<u32> = Vec::with_capacity(table.records.len() + 1);

        let start = ctxt.bytes_written();
        for record in table.records {
            let offset = ctxt.bytes_written();

            offsets.push(u32::try_from(ctxt.bytes_written() - start)?);

            match record {
                GlyfRecord::Empty => (),
                GlyfRecord::Present(glyph) => ReadScope::write(ctxt, glyph)?,
                GlyfRecord::Parsed(glyph) => Glyph::write(ctxt, glyph)?,
            }

            if index_to_loc_format == IndexToLocFormat::Short {
                let length = ctxt.bytes_written() - offset;
                let padded_length = word_align(length);
                ctxt.write_zeros(padded_length - length)?;
            }
        }

        // Add the final loca entry
        offsets.push(u32::try_from(ctxt.bytes_written() - start)?);

        Ok(owned::LocaTable { offsets })
    }
}

impl<'a> ReadBinary<'a> for Glyph<'a> {
    type HostType = Self;

    fn read(ctxt: &mut ReadCtxt<'a>) -> Result<Self, ParseError> {
        let number_of_contours = ctxt.read_i16be()?;
        let bounding_box = ctxt.read::<BoundingBox>()?;

        if number_of_contours >= 0 {
            // Simple glyph
            // Cast is safe as we've checked value is positive above
            let glyph = ctxt.read_dep::<SimpleGlyph>(number_of_contours as u16)?;

            Ok(Glyph {
                number_of_contours,
                bounding_box,
                data: GlyphData::Simple(glyph),
            })
        } else {
            // Composite glyph
            let glyphs = ctxt.read::<CompositeGlyphs>()?;

            let instruction_length = if glyphs.have_instructions {
                usize::from(ctxt.read::<U16Be>()?)
            } else {
                0
            };
            let instructions = ctxt.read_slice(instruction_length)?;

            Ok(Glyph {
                number_of_contours,
                bounding_box,
                data: GlyphData::Composite {
                    glyphs: glyphs.glyphs,
                    instructions,
                },
            })
        }
    }
}

impl<'a> WriteBinary for Glyph<'a> {
    type Output = ();

    fn write<C: WriteContext>(ctxt: &mut C, glyph: Glyph<'a>) -> Result<(), WriteError> {
        I16Be::write(ctxt, glyph.number_of_contours)?;
        BoundingBox::write(ctxt, glyph.bounding_box)?;
        match glyph.data {
            GlyphData::Simple(simple_glyph) => SimpleGlyph::write(ctxt, simple_glyph)?,
            GlyphData::Composite {
                glyphs,
                instructions,
            } => {
                let mut has_instructions = false;
                for glyph in glyphs {
                    has_instructions |= glyph.flags.we_have_instructions();
                    CompositeGlyph::write(ctxt, glyph)?;
                }
                if has_instructions {
                    U16Be::write(ctxt, u16::try_from(instructions.len())?)?;
                    ctxt.write_bytes(instructions)?;
                }
            }
        }

        Ok(())
    }
}

impl<'a> ReadBinaryDep<'a> for SimpleGlyph {
    type Args = u16;
    type HostType = Self;

    fn read_dep(
        ctxt: &mut ReadCtxt<'a>,
        number_of_contours: Self::Args,
    ) -> Result<Self, ParseError> {
        let number_of_contours = usize::from(number_of_contours);
        let end_pts_of_contours: Vec<u16> = ctxt
            .read_array::<U16Be>(number_of_contours)?
            .iter()
            .collect();
        let instruction_length = ctxt.read::<U16Be>()?;
        let instructions = ctxt.read_slice(usize::from(instruction_length))?;
        // end_pts_of_contours stores the index of the end points.
        // Therefore the number of coordinates is the last index + 1
        let number_of_coordinates = end_pts_of_contours
            .last()
            .map(|&last| usize::from(last) + 1)
            .unwrap_or(0);

        // Read all the flags
        let mut flags = Vec::with_capacity(number_of_contours);
        while flags.len() < number_of_coordinates {
            let flag = ctxt.read::<SimpleGlyphFlag>()?;
            if flag.is_repeated() {
                let count = usize::from(ctxt.read::<U8>()?) + 1; // + 1 to include the current entry
                let repeat = iter::repeat(flag).take(count);
                flags.extend(repeat)
            } else {
                flags.push(flag);
            }
        }

        // Read all the x coordinates
        let x_coordinates = flags
            .iter()
            .map(|flag| {
                if flag.x_is_short() {
                    ctxt.read::<U8>()
                        .map(|val| i16::from(val) * flag.x_short_sign())
                } else if flag.x_is_same_or_positive() {
                    Ok(0)
                } else {
                    ctxt.read::<I16Be>()
                }
            })
            .collect::<Result<Vec<_>, _>>()?;

        // Read all y coordinates
        let y_coordinates = flags
            .iter()
            .map(|flag| {
                if flag.y_is_short() {
                    ctxt.read::<U8>()
                        .map(|val| i16::from(val) * flag.y_short_sign())
                } else if flag.y_is_same_or_positive() {
                    Ok(0)
                } else {
                    ctxt.read::<I16Be>()
                }
            })
            .collect::<Result<Vec<_>, _>>()?;

        // The x and y coordinates are stored as deltas against the previous point, with the first
        // one being implicitly against (0, 0). Here we resolve these deltas into absolute (x, y)
        // values and combine them into Points.
        let coordinates = x_coordinates
            .into_iter()
            .zip(y_coordinates.into_iter())
            .scan(Point(0, 0), |prev_point, (x, y)| {
                *prev_point = Point(prev_point.0 + x, prev_point.1 + y);
                Some(*prev_point)
            })
            .collect();

        Ok(SimpleGlyph {
            end_pts_of_contours,
            instructions: instructions.to_vec(),
            flags,
            coordinates,
        })
    }
}

impl<'a> WriteBinary for SimpleGlyph {
    type Output = ();

    fn write<C: WriteContext>(ctxt: &mut C, glyph: SimpleGlyph) -> Result<(), WriteError> {
        assert!(glyph.flags.len() == glyph.coordinates.len());

        ctxt.write_vec::<U16Be>(glyph.end_pts_of_contours)?;
        U16Be::write(ctxt, u16::try_from(glyph.instructions.len())?)?;
        ctxt.write_bytes(&glyph.instructions)?;

        // Flags and coordinates are written without any attempt to compact them using
        // smaller representation, use of REPEAT, or X/Y_IS_SAME.
        // TODO: try to compact the values written

        // flags
        let mask = SimpleGlyphFlag::ON_CURVE_POINT; // ON_CURVE_POINT is the only flag that needs to carry through
        for flag in glyph.flags {
            U8::write(ctxt, (flag & mask).bits())?;
        }

        // x coordinates
        let mut prev_x = 0;
        for Point(x, _) in &glyph.coordinates {
            let delta_x = x - prev_x;
            I16Be::write(ctxt, delta_x)?;
            prev_x = *x;
        }

        // y coordinates
        let mut prev_y = 0;
        for Point(_, y) in &glyph.coordinates {
            let delta_y = y - prev_y;
            I16Be::write(ctxt, delta_y)?;
            prev_y = *y;
        }

        Ok(())
    }
}

impl<'a> ReadFrom<'a> for SimpleGlyphFlag {
    type ReadType = U8;

    fn from(flag: u8) -> Self {
        SimpleGlyphFlag::from_bits_truncate(flag)
    }
}

impl<'a> ReadBinary<'a> for CompositeGlyphs {
    type HostType = Self;

    fn read(ctxt: &mut ReadCtxt<'_>) -> Result<Self, ParseError> {
        let mut have_instructions = false;
        let mut glyphs = Vec::new();
        loop {
            let flags = ctxt.read::<CompositeGlyphFlag>()?;
            let data = ctxt.read_dep::<CompositeGlyph>(flags)?;

            if flags.we_have_instructions() {
                have_instructions = true;
            }

            glyphs.push(data);

            if !flags.more_components() {
                break;
            }
        }

        Ok(CompositeGlyphs {
            glyphs,
            have_instructions,
        })
    }
}

impl SimpleGlyphFlag {
    pub fn is_on_curve(self) -> bool {
        self & Self::ON_CURVE_POINT == Self::ON_CURVE_POINT
    }

    pub fn x_is_short(self) -> bool {
        self & Self::X_SHORT_VECTOR == Self::X_SHORT_VECTOR
    }

    pub fn y_is_short(self) -> bool {
        self & Self::Y_SHORT_VECTOR == Self::Y_SHORT_VECTOR
    }

    pub fn is_repeated(self) -> bool {
        self & Self::REPEAT_FLAG == Self::REPEAT_FLAG
    }

    pub fn x_short_sign(self) -> i16 {
        if self.x_is_same_or_positive() {
            1
        } else {
            -1
        }
    }

    pub fn y_short_sign(self) -> i16 {
        if self.y_is_same_or_positive() {
            1
        } else {
            -1
        }
    }

    pub fn x_is_same_or_positive(self) -> bool {
        self & Self::X_IS_SAME_OR_POSITIVE_X_SHORT_VECTOR
            == Self::X_IS_SAME_OR_POSITIVE_X_SHORT_VECTOR
    }

    pub fn y_is_same_or_positive(self) -> bool {
        self & Self::Y_IS_SAME_OR_POSITIVE_Y_SHORT_VECTOR
            == Self::Y_IS_SAME_OR_POSITIVE_Y_SHORT_VECTOR
    }
}

impl<'a> ReadFrom<'a> for CompositeGlyphFlag {
    type ReadType = U16Be;

    fn from(flag: u16) -> Self {
        CompositeGlyphFlag::from_bits_truncate(flag)
    }
}

impl<'a> ReadBinaryDep<'a> for CompositeGlyphArgument {
    type Args = CompositeGlyphFlag;
    type HostType = Self;

    fn read_dep(ctxt: &mut ReadCtxt<'a>, flags: Self::Args) -> Result<Self, ParseError> {
        let arg = match (flags.arg_1_and_2_are_words(), flags.args_are_xy_values()) {
            (true, true) => CompositeGlyphArgument::I16(ctxt.read_i16be()?),
            (true, false) => CompositeGlyphArgument::U16(ctxt.read_u16be()?),
            (false, true) => CompositeGlyphArgument::I8(ctxt.read_i8()?),
            (false, false) => CompositeGlyphArgument::U8(ctxt.read_u8()?),
        };

        Ok(arg)
    }
}

impl<'a> WriteBinary for CompositeGlyphArgument {
    type Output = ();

    fn write<C: WriteContext>(ctxt: &mut C, arg: CompositeGlyphArgument) -> Result<(), WriteError> {
        match arg {
            CompositeGlyphArgument::U8(val) => U8::write(ctxt, val),
            CompositeGlyphArgument::I8(val) => I8::write(ctxt, val),
            CompositeGlyphArgument::U16(val) => U16Be::write(ctxt, val),
            CompositeGlyphArgument::I16(val) => I16Be::write(ctxt, val),
        }
    }
}

impl<'a> ReadBinaryDep<'a> for CompositeGlyph {
    type Args = CompositeGlyphFlag;
    type HostType = Self;

    fn read_dep(ctxt: &mut ReadCtxt<'a>, flags: Self::Args) -> Result<Self, ParseError> {
        let glyph_index = ctxt.read_u16be()?;
        let argument1 = ctxt.read_dep::<CompositeGlyphArgument>(flags)?;
        let argument2 = ctxt.read_dep::<CompositeGlyphArgument>(flags)?;

        let scale = if flags.we_have_a_scale() {
            Some(CompositeGlyphScale::Scale(ctxt.read::<F2Dot14>()?))
        } else if flags.we_have_an_x_and_y_scale() {
            Some(CompositeGlyphScale::XY {
                x_scale: ctxt.read::<F2Dot14>()?,
                y_scale: ctxt.read::<F2Dot14>()?,
            })
        } else if flags.we_have_a_two_by_two() {
            Some(CompositeGlyphScale::Matrix([
                [ctxt.read::<F2Dot14>()?, ctxt.read::<F2Dot14>()?],
                [ctxt.read::<F2Dot14>()?, ctxt.read::<F2Dot14>()?],
            ]))
        } else {
            None
        };

        Ok(CompositeGlyph {
            flags,
            glyph_index,
            argument1,
            argument2,
            scale,
        })
    }
}

impl<'a> WriteBinary for CompositeGlyph {
    type Output = ();

    fn write<C: WriteContext>(ctxt: &mut C, glyph: CompositeGlyph) -> Result<(), WriteError> {
        U16Be::write(ctxt, glyph.flags.bits())?;
        U16Be::write(ctxt, glyph.glyph_index)?;
        CompositeGlyphArgument::write(ctxt, glyph.argument1)?;
        CompositeGlyphArgument::write(ctxt, glyph.argument2)?;
        if let Some(scale) = glyph.scale {
            CompositeGlyphScale::write(ctxt, scale)?;
        }
        Ok(())
    }
}

impl<'a> WriteBinary for CompositeGlyphScale {
    type Output = ();

    fn write<C: WriteContext>(ctxt: &mut C, scale: CompositeGlyphScale) -> Result<(), WriteError> {
        match scale {
            CompositeGlyphScale::Scale(scale) => F2Dot14::write(ctxt, scale)?,
            CompositeGlyphScale::XY { x_scale, y_scale } => {
                F2Dot14::write(ctxt, x_scale)?;
                F2Dot14::write(ctxt, y_scale)?;
            }
            CompositeGlyphScale::Matrix(matrix) => {
                F2Dot14::write(ctxt, matrix[0][0])?;
                F2Dot14::write(ctxt, matrix[0][1])?;
                F2Dot14::write(ctxt, matrix[1][0])?;
                F2Dot14::write(ctxt, matrix[1][1])?;
            }
        }

        Ok(())
    }
}

impl<'a> ReadBinary<'a> for BoundingBox {
    type HostType = Self;

    fn read(ctxt: &mut ReadCtxt<'a>) -> Result<Self, ParseError> {
        let x_min = ctxt.read::<I16Be>()?;
        let y_min = ctxt.read::<I16Be>()?;
        let x_max = ctxt.read::<I16Be>()?;
        let y_max = ctxt.read::<I16Be>()?;

        Ok(BoundingBox {
            x_min,
            y_min,
            x_max,
            y_max,
        })
    }
}

impl<'a> WriteBinary for BoundingBox {
    type Output = ();

    fn write<C: WriteContext>(ctxt: &mut C, bbox: BoundingBox) -> Result<(), WriteError> {
        I16Be::write(ctxt, bbox.x_min)?;
        I16Be::write(ctxt, bbox.y_min)?;
        I16Be::write(ctxt, bbox.x_max)?;
        I16Be::write(ctxt, bbox.y_max)?;
        Ok(())
    }
}

struct SubsetGlyph<'a> {
    old_id: u16,
    record: GlyfRecord<'a>,
}

fn add_glyph(glyph_ids: &mut Vec<u16>, record: &mut GlyfRecord<'_>) {
    match record {
        GlyfRecord::Parsed(Glyph {
            data: GlyphData::Composite { glyphs, .. },
            ..
        }) => {
            for composite_glyph in glyphs.iter_mut() {
                let new_id = glyph_ids
                    .iter()
                    .position(|&id| id == composite_glyph.glyph_index)
                    .unwrap_or_else(|| {
                        let new_id = glyph_ids.len();
                        glyph_ids.push(composite_glyph.glyph_index);
                        new_id
                    });
                composite_glyph.glyph_index = new_id as u16;
            }
        }
        _ => unreachable!(),
    }
}

impl<'a> GlyfTable<'a> {
    /// Returns a copy of this table that only contains the glyphs specified by `glyph_ids`.
    pub fn subset(&self, glyph_ids: &[u16]) -> Result<(GlyfTable<'a>, Vec<u16>), ParseError> {
        let mut glyph_ids = glyph_ids.to_vec();
        let mut records = Vec::with_capacity(glyph_ids.len());

        let mut i = 0;
        while i < glyph_ids.len() {
            let glyph_id = glyph_ids[i];
            let mut record = self
                .records
                .get(usize::from(glyph_id))
                .ok_or(ParseError::BadIndex)?
                .clone();
            if record.is_composite()? {
                record.parse()?;
                add_glyph(&mut glyph_ids, &mut record);
            }
            records.push(SubsetGlyph {
                old_id: glyph_id,
                record,
            });
            i += 1;
        }

        let mut new_to_old_id = vec![0u16; records.len()];
        let records = records
            .into_iter()
            .enumerate()
            .map(|(new_id, subset_record)| {
                new_to_old_id[new_id] = subset_record.old_id;
                subset_record.record
            })
            .collect();

        Ok((GlyfTable { records }, new_to_old_id))
    }
}

impl<'a> GlyfRecord<'a> {
    pub fn number_of_contours(&self) -> Result<i16, ParseError> {
        match self {
            GlyfRecord::Empty => Ok(0),
            GlyfRecord::Present(scope) => scope.read::<I16Be>(),
            GlyfRecord::Parsed(glyph) => Ok(glyph.number_of_contours),
        }
    }

    pub fn is_composite(&self) -> Result<bool, ParseError> {
        self.number_of_contours()
            .map(|number_of_contours| number_of_contours < 0)
    }

    pub fn parse(&mut self) -> Result<(), ParseError> {
        if let GlyfRecord::Present(scope) = self {
            *self = scope.read::<Glyph<'_>>().map(GlyfRecord::Parsed)?;
        }
        Ok(())
    }
}

impl CompositeGlyphFlag {
    pub fn arg_1_and_2_are_words(self) -> bool {
        self & Self::ARG_1_AND_2_ARE_WORDS == Self::ARG_1_AND_2_ARE_WORDS
    }

    pub fn args_are_xy_values(self) -> bool {
        self & Self::ARGS_ARE_XY_VALUES == Self::ARGS_ARE_XY_VALUES
    }

    pub fn we_have_a_scale(self) -> bool {
        self & Self::WE_HAVE_A_SCALE == Self::WE_HAVE_A_SCALE
    }

    pub fn we_have_an_x_and_y_scale(self) -> bool {
        self & Self::WE_HAVE_AN_X_AND_Y_SCALE == Self::WE_HAVE_AN_X_AND_Y_SCALE
    }

    pub fn we_have_a_two_by_two(self) -> bool {
        self & Self::WE_HAVE_A_TWO_BY_TWO == Self::WE_HAVE_A_TWO_BY_TWO
    }

    pub fn more_components(self) -> bool {
        self & Self::MORE_COMPONENTS == Self::MORE_COMPONENTS
    }

    pub fn we_have_instructions(self) -> bool {
        self & Self::WE_HAVE_INSTRUCTIONS == Self::WE_HAVE_INSTRUCTIONS
    }
}

impl BoundingBox {
    /// Calculate xMin, xMax and yMin, yMax from a collection of `Points`
    ///
    /// Panics if `points` is empty.
    pub fn from_points(points: &[Point]) -> Self {
        assert!(!points.is_empty());

        let Point(initial_x, initial_y) = points[0];
        let initial = BoundingBox {
            x_min: initial_x,
            x_max: initial_x,
            y_min: initial_y,
            y_max: initial_y,
        };

        points
            .iter()
            .fold(initial, |mut bounding_box, &Point(x, y)| {
                if x < bounding_box.x_min {
                    bounding_box.x_min = x
                }
                if x > bounding_box.x_max {
                    bounding_box.x_max = x
                }
                if y < bounding_box.y_min {
                    bounding_box.y_min = y
                }
                if y > bounding_box.y_max {
                    bounding_box.y_max = y
                }

                bounding_box
            })
    }
}

impl SimpleGlyph {
    pub fn bounding_box(&self) -> BoundingBox {
        BoundingBox::from_points(&self.coordinates)
    }
}

#[cfg(test)]
mod tests {
    use super::{BoundingBox, GlyfRecord, GlyfTable, IndexToLocFormat, Point};
    use crate::binary::read::ReadScope;
    use crate::binary::write::{WriteBinary, WriteBinaryDep, WriteBuffer, WriteContext};
    use crate::tables::glyf::{
        CompositeGlyph, CompositeGlyphArgument, CompositeGlyphFlag, Glyph, GlyphData, SimpleGlyph,
        SimpleGlyphFlag,
    };
    use crate::tables::loca::{owned, LocaTable};

    fn simple_glyph_fixture() -> Glyph<'static> {
        let simple_glyph = SimpleGlyph {
            end_pts_of_contours: vec![8],
            instructions: vec![],
            flags: vec![
                SimpleGlyphFlag::ON_CURVE_POINT
                    | SimpleGlyphFlag::Y_SHORT_VECTOR
                    | SimpleGlyphFlag::Y_IS_SAME_OR_POSITIVE_Y_SHORT_VECTOR,
                SimpleGlyphFlag::X_SHORT_VECTOR
                    | SimpleGlyphFlag::Y_SHORT_VECTOR
                    | SimpleGlyphFlag::X_IS_SAME_OR_POSITIVE_X_SHORT_VECTOR,
                SimpleGlyphFlag::ON_CURVE_POINT
                    | SimpleGlyphFlag::X_SHORT_VECTOR
                    | SimpleGlyphFlag::Y_SHORT_VECTOR
                    | SimpleGlyphFlag::X_IS_SAME_OR_POSITIVE_X_SHORT_VECTOR,
                SimpleGlyphFlag::X_SHORT_VECTOR
                    | SimpleGlyphFlag::Y_SHORT_VECTOR
                    | SimpleGlyphFlag::X_IS_SAME_OR_POSITIVE_X_SHORT_VECTOR,
                SimpleGlyphFlag::ON_CURVE_POINT
                    | SimpleGlyphFlag::X_SHORT_VECTOR
                    | SimpleGlyphFlag::Y_SHORT_VECTOR
                    | SimpleGlyphFlag::X_IS_SAME_OR_POSITIVE_X_SHORT_VECTOR,
                SimpleGlyphFlag::X_SHORT_VECTOR | SimpleGlyphFlag::Y_SHORT_VECTOR,
                SimpleGlyphFlag::ON_CURVE_POINT
                    | SimpleGlyphFlag::X_SHORT_VECTOR
                    | SimpleGlyphFlag::Y_SHORT_VECTOR,
                SimpleGlyphFlag::X_SHORT_VECTOR | SimpleGlyphFlag::Y_SHORT_VECTOR,
                SimpleGlyphFlag::ON_CURVE_POINT
                    | SimpleGlyphFlag::X_SHORT_VECTOR
                    | SimpleGlyphFlag::Y_SHORT_VECTOR,
            ],
            coordinates: vec![
                Point(433, 77),
                Point(499, 30),
                Point(625, 2),
                Point(756, -27),
                Point(915, -31),
                Point(891, -47),
                Point(862, -60),
                Point(832, -73),
                Point(819, -103),
            ],
        };
        Glyph {
            number_of_contours: 1,
            bounding_box: BoundingBox {
                x_min: 60,
                x_max: 915,
                y_min: -105,
                y_max: 702,
            },
            data: GlyphData::Simple(simple_glyph),
        }
    }

    fn composite_glyph_fixture(instructions: &'static [u8]) -> Glyph<'static> {
        Glyph {
            number_of_contours: -1,
            bounding_box: BoundingBox {
                x_min: 205,
                x_max: 4514,
                y_min: 0,
                y_max: 1434,
            },
            data: GlyphData::Composite {
                glyphs: vec![
                    CompositeGlyph {
                        flags: CompositeGlyphFlag::ARG_1_AND_2_ARE_WORDS
                            | CompositeGlyphFlag::ARGS_ARE_XY_VALUES
                            | CompositeGlyphFlag::ROUND_XY_TO_GRID
                            | CompositeGlyphFlag::MORE_COMPONENTS
                            | CompositeGlyphFlag::UNSCALED_COMPONENT_OFFSET,
                        glyph_index: 5,
                        argument1: CompositeGlyphArgument::I16(3453),
                        argument2: CompositeGlyphArgument::I16(0),
                        scale: None,
                    },
                    CompositeGlyph {
                        flags: CompositeGlyphFlag::ARG_1_AND_2_ARE_WORDS
                            | CompositeGlyphFlag::ARGS_ARE_XY_VALUES
                            | CompositeGlyphFlag::ROUND_XY_TO_GRID
                            | CompositeGlyphFlag::MORE_COMPONENTS
                            | CompositeGlyphFlag::UNSCALED_COMPONENT_OFFSET,
                        glyph_index: 4,
                        argument1: CompositeGlyphArgument::I16(2773),
                        argument2: CompositeGlyphArgument::I16(0),
                        scale: None,
                    },
                    CompositeGlyph {
                        flags: CompositeGlyphFlag::ARG_1_AND_2_ARE_WORDS
                            | CompositeGlyphFlag::ARGS_ARE_XY_VALUES
                            | CompositeGlyphFlag::ROUND_XY_TO_GRID
                            | CompositeGlyphFlag::MORE_COMPONENTS
                            | CompositeGlyphFlag::UNSCALED_COMPONENT_OFFSET,
                        glyph_index: 3,
                        argument1: CompositeGlyphArgument::I16(1182),
                        argument2: CompositeGlyphArgument::I16(0),
                        scale: None,
                    },
                    CompositeGlyph {
                        flags: CompositeGlyphFlag::ARG_1_AND_2_ARE_WORDS
                            | CompositeGlyphFlag::ARGS_ARE_XY_VALUES
                            | CompositeGlyphFlag::ROUND_XY_TO_GRID
                            | CompositeGlyphFlag::UNSCALED_COMPONENT_OFFSET
                            | CompositeGlyphFlag::WE_HAVE_INSTRUCTIONS,
                        glyph_index: 2,
                        argument1: CompositeGlyphArgument::I16(205),
                        argument2: CompositeGlyphArgument::I16(0),
                        scale: None,
                    },
                ],
                instructions,
            },
        }
    }

    #[test]
    fn test_point_bounding_box() {
        let points = [Point(1761, 565), Point(2007, 565), Point(1884, 1032)];

        let expected = BoundingBox {
            x_min: 1761,
            y_min: 565,
            x_max: 2007,
            y_max: 1032,
        };

        assert_eq!(BoundingBox::from_points(&points), expected);
    }

    #[test]
    fn write_glyf_table_loca_sanity_check() {
        let glyf = GlyfTable {
            records: vec![GlyfRecord::Empty, GlyfRecord::Empty],
        };
        let num_glyphs = glyf.records.len();
        let mut buffer = WriteBuffer::new();
        let loca = GlyfTable::write_dep(&mut buffer, glyf, IndexToLocFormat::Long).unwrap();
        assert_eq!(loca.offsets.len(), num_glyphs + 1);
    }

    #[test]
    fn write_composite_glyf_instructions() {
        let glyph = composite_glyph_fixture(&[1, 2, 3, 4]);

        let mut buffer = WriteBuffer::new();
        Glyph::write(&mut buffer, glyph).unwrap();

        // Read it back and check the instructions are intact
        match ReadScope::new(buffer.bytes()).read::<Glyph<'_>>() {
            Ok(Glyph {
                data: GlyphData::Composite { instructions, .. },
                ..
            }) => assert_eq!(instructions, vec![1, 2, 3, 4].as_slice()),
            _ => panic!("did not read back expected instructions"),
        }
    }

    #[test]
    fn read_glyph_offsets_correctly() {
        // Test for a bug in which only the length relative to current ReadCtxt offset was used
        // to read a glyph out of the `glyf` table. It should have been using `start` and `end`
        // offsets read from `loca`. The bug was discovered when reading the Baekmuk Batang font
        // in which the glyph data starts at offset 366.
        let glyph = simple_glyph_fixture();

        // Write the glyph out
        let mut buffer = WriteBuffer::new();
        buffer.write_zeros(4).unwrap(); // Add some unused data at the start
        Glyph::write(&mut buffer, glyph).unwrap();
        let glyph_data = buffer.into_inner();

        let mut buffer = WriteBuffer::new();
        let loca = owned::LocaTable {
            offsets: vec![4, 4, glyph_data.len() as u32 - 4],
        };
        owned::LocaTable::write_dep(&mut buffer, loca, IndexToLocFormat::Long)
            .expect("unable to generate loca");
        let loca_data = buffer.into_inner();

        // Parse and verify
        let num_glyphs = 2;
        let loca = ReadScope::new(&loca_data)
            .read_dep::<LocaTable<'_>>((num_glyphs, IndexToLocFormat::Long))
            .expect("unable to read loca");
        let glyf = ReadScope::new(&glyph_data)
            .read_dep::<GlyfTable<'_>>(&loca)
            .expect("unable to read glyf");
        assert_eq!(glyf.records.len(), 2);
        assert_eq!(&glyf.records[0], &GlyfRecord::Empty);
        let glyph = &glyf.records[1];

        // Before the fix num_contours was read as 0
        assert_eq!(glyph.number_of_contours().unwrap(), 1);
    }

    // Regarding simple glyphs the OpenType spec says:
    // This is the table information needed if numberOfContours is greater than or equal to zero
    // https://docs.microsoft.com/en-us/typography/opentype/spec/glyf#simple-glyph-description
    //
    // We previously rejected glyphs with zero contours.
    #[test]
    fn simple_glyph_with_zero_contours() {
        let glyph_data = &[
            0, 0, // instruction length
        ];
        let expected = SimpleGlyph {
            end_pts_of_contours: vec![],
            instructions: vec![],
            flags: vec![],
            coordinates: vec![],
        };

        let glyph = ReadScope::new(glyph_data)
            .read_dep::<SimpleGlyph>(0)
            .unwrap();
        assert_eq!(glyph, expected);
    }

    #[test]
    fn write_simple_glyph_with_zero_contours() {
        let glyph = SimpleGlyph {
            end_pts_of_contours: vec![],
            instructions: vec![],
            flags: vec![],
            coordinates: vec![],
        };

        let mut buffer = WriteBuffer::new();
        assert!(SimpleGlyph::write(&mut buffer, glyph).is_ok());
    }

    #[test]
    fn read_glyph_with_incorrect_loca_length() {
        // Write the glyph out
        let glyph = simple_glyph_fixture();
        let mut buffer = WriteBuffer::new();
        Glyph::write(&mut buffer, glyph).unwrap();
        let glyph_data = buffer.into_inner();

        let mut buffer = WriteBuffer::new();
        let loca = owned::LocaTable {
            offsets: vec![0, 0, glyph_data.len() as u32 + 1], // + 1 to go past end of glyf
        };
        owned::LocaTable::write_dep(&mut buffer, loca, IndexToLocFormat::Long)
            .expect("unable to generate loca");
        let loca_data = buffer.into_inner();

        // Parse and verify
        let num_glyphs = 2;
        let loca = ReadScope::new(&loca_data)
            .read_dep::<LocaTable<'_>>((num_glyphs, IndexToLocFormat::Long))
            .expect("unable to read loca");
        assert!(ReadScope::new(&glyph_data)
            .read_dep::<GlyfTable<'_>>(&loca)
            .is_ok())
    }

    // This is a test for a bug in which a composite glyph read with has_instructions = yes, but
    // instruction length 0 would be written without an instruction length field. This resulting
    // font was invalid as parsers would see the has_instructions flag and attempt to read the
    // non-existent instruction length.
    #[test]
    fn write_composite_glyph_with_empty_instructions() {
        let glyph = composite_glyph_fixture(&[]);

        let mut buffer = WriteBuffer::new();
        Glyph::write(&mut buffer, glyph).unwrap();

        // Ensure we can read it back. Before this fix this failed.
        match ReadScope::new(buffer.bytes()).read::<Glyph<'_>>() {
            Ok(Glyph {
                data: GlyphData::Composite { instructions, .. },
                ..
            }) => assert_eq!(instructions, &[]),
            Ok(_) => panic!("did not read back expected glyph"),
            Err(_) => panic!("unable to read back glyph"),
        }
    }
}