logo
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
//! Reading of the WOFF2 font format.

mod collection;
mod lut;

use std::borrow::Cow;
use std::collections::HashMap;
use std::convert::TryFrom;
use std::io::{Cursor, Read};

use bitflags::bitflags;
use itertools::Either;

use self::lut::{XYTriplet, COORD_LUT, KNOWN_TABLE_TAGS};
use crate::binary::read::{
    ReadArray, ReadArrayCow, ReadBinary, ReadBinaryDep, ReadBuf, ReadCtxt, ReadFrom, ReadScope,
};
use crate::binary::{write, I16Be, U16Be, U8};
use crate::error::{ParseError, ReadWriteError};
use crate::tables::glyf::{
    BoundingBox, CompositeGlyphs, GlyfRecord, GlyfTable, Glyph, GlyphData, Point, SimpleGlyph,
    SimpleGlyphFlag,
};
use crate::tables::loca::{owned, LocaTable};
use crate::tables::{
    FontTableProvider, HeadTable, HheaTable, HmtxTable, IndexToLocFormat, LongHorMetric, MaxpTable,
    SfntVersion, TTCF_MAGIC,
};
use crate::{read_table, tag};

pub const MAGIC: u32 = 0x774F4632; /* wOF2 */
// This is the default size of the buffer in the brotli crate.
// There's no guidance on how to choose this value.
const BROTLI_DECODER_BUFFER_SIZE: usize = 4096;
const BITS_0_TO_5: u8 = 0x3F;
const LOWEST_UCODE: u16 = 253;

/// UIntBase128, Variable-length encoding of 32-bit unsigned integers.
#[derive(Copy, Clone)]
pub enum U32Base128 {}

/// 255UInt16, Variable-length encoding of a 16-bit unsigned integer for optimized intermediate
/// font data storage.
#[derive(Copy, Clone)]
pub enum PackedU16 {}

#[derive(Clone, Copy)]
struct WoffFlag(u8);

#[derive(Clone)]
pub struct Woff2Font<'a> {
    pub scope: ReadScope<'a>,
    pub woff_header: Woff2Header,
    // We have to read and parse the table directory to know where the font tables are stored
    // so in doing so we hold onto the TableDirectoryEntries produced as a result
    pub table_directory: Vec<TableDirectoryEntry>,
    pub collection_directory: Option<collection::Directory>,
    pub table_data_block: Vec<u8>,
}

pub struct Woff2TableProvider {
    flavor: u32,
    tables: HashMap<u32, Box<[u8]>>,
}

#[derive(Clone, Eq, PartialEq, Debug)]
pub struct Woff2Header {
    pub flavor: u32,
    pub length: u32,
    pub num_tables: u16,
    pub total_sfnt_size: u32,
    pub total_compressed_size: u32,
    pub _major_version: u16,
    pub _minor_version: u16,
    pub meta_offset: u32,
    pub meta_length: u32,
    pub meta_orig_length: u32,
    pub priv_offset: u32,
    pub priv_length: u32,
}

#[derive(Copy, Clone, Eq, PartialEq, Debug)]
pub struct TableDirectoryEntry {
    pub tag: u32,
    pub offset: usize,
    pub orig_length: u32,
    pub transform_length: Option<u32>,
}

struct TransformedGlyphTable<'a> {
    /// Number of glyphs
    num_glyphs: u16,
    /// Offset format for loca table, should be consistent with indexToLocFormat of the original head table (see [OFF] specification)
    _index_format: u16,
    /// Stream of i16 values representing number of contours for each glyph record
    n_contour_scope: ReadScope<'a>,
    /// Stream of values representing number of outline points for each contour in glyph records
    n_points_scope: ReadScope<'a>,
    /// Stream of u8 values representing flag values for each outline point.
    flag_scope: ReadScope<'a>,
    /// Stream of bytes representing point coordinate values using variable length encoding format (defined in subclause 5.2)
    glyph_scope: ReadScope<'a>,
    /// Stream of bytes representing component flag values and associated composite glyph data
    composite_scope: ReadScope<'a>,
    /// Bitmap (a numGlyphs-long bit array) indicating explicit bounding boxes
    bbox_bitmap_scope: ReadScope<'a>,
    /// Stream of i16 values representing glyph bounding box data
    bbox_scope: ReadScope<'a>,
    /// Stream of u8 values representing a set of instructions for each corresponding glyph
    instruction_scope: ReadScope<'a>,
}

bitflags! {
    pub struct HmtxTableFlag: u8 {
        const LSB_ABSENT = 0b01;
        const LEFT_SIDE_BEARING_ABSENT = 0b10;
    }
}

pub enum Woff2GlyfTable {}
pub enum Woff2LocaTable {}
pub enum Woff2HmtxTable {}

pub struct BitSlice<'a> {
    data: &'a [u8],
}

impl<'a> Woff2Font<'a> {
    /// The "sfnt version" of the input font
    pub fn flavor(&self) -> u32 {
        self.woff_header.flavor
    }

    /// Decompress and return the extended metadata XML if present
    pub fn extended_metadata(&self) -> Result<Option<String>, ParseError> {
        let offset = usize::try_from(self.woff_header.meta_offset)?;
        let length = usize::try_from(self.woff_header.meta_length)?;
        if offset == 0 || length == 0 {
            return Ok(None);
        }

        let compressed_metadata = self.scope.offset_length(offset, length)?;

        let mut input = brotli_decompressor::Decompressor::new(
            Cursor::new(compressed_metadata.data()),
            BROTLI_DECODER_BUFFER_SIZE,
        );
        let mut metadata = String::new();
        input
            .read_to_string(&mut metadata)
            .map_err(|_err| ParseError::CompressionError)?;

        Ok(Some(metadata))
    }

    pub fn table_data_block_scope(&'a self) -> ReadScope<'a> {
        ReadScope::new(&self.table_data_block)
    }

    fn read_table_directory(
        ctxt: &mut ReadCtxt<'_>,
        num_tables: usize,
    ) -> Result<Vec<TableDirectoryEntry>, ParseError> {
        let mut offset = 0;
        let mut table_directory = Vec::with_capacity(num_tables);
        for _i in 0..num_tables {
            let entry = ctxt.read_dep::<TableDirectoryEntry>(offset)?;
            offset += entry.length();
            table_directory.push(entry);
        }

        Ok(table_directory)
    }

    pub fn find_table_entry(&self, tag: u32, index: usize) -> Option<&TableDirectoryEntry> {
        if let Some(collection_directory) = &self.collection_directory {
            collection_directory
                .get(index)
                .and_then(|font| font.table_entries(self).find(|entry| entry.tag == tag))
        } else {
            self.table_directory.iter().find(|entry| entry.tag == tag)
        }
    }

    pub fn read_table(&self, tag: u32, index: usize) -> Result<Option<ReadBuf<'_>>, ParseError> {
        self.find_table_entry(tag, index)
            .map(|entry| entry.read_table(&self.table_data_block_scope()))
            .transpose()
    }

    pub fn table_provider(&self, index: usize) -> Result<Woff2TableProvider, ReadWriteError> {
        Woff2TableProvider::new(self, index)
    }
}

impl<'a> ReadBinary<'a> for Woff2Font<'a> {
    type HostType = Self;

    fn read(ctxt: &mut ReadCtxt<'a>) -> Result<Self, ParseError> {
        let scope = ctxt.scope();
        let mut peek = ctxt.clone();
        let magic = peek.read_u32be()?;
        match magic {
            MAGIC => {
                let woff_header = ctxt.read::<Woff2Header>()?;

                let table_directory =
                    Self::read_table_directory(ctxt, usize::from(woff_header.num_tables))?;

                let collection_directory = if woff_header.flavor == TTCF_MAGIC {
                    Some(ctxt.read::<collection::Directory>()?)
                } else {
                    None
                };

                // Read compressed font table data
                let compressed_data =
                    ctxt.read_slice(usize::try_from(woff_header.total_compressed_size)?)?;
                let mut input = brotli_decompressor::Decompressor::new(
                    Cursor::new(compressed_data),
                    BROTLI_DECODER_BUFFER_SIZE,
                );
                let mut table_data_block = Vec::new();
                input
                    .read_to_end(&mut table_data_block)
                    .map_err(|_err| ParseError::CompressionError)?;

                Ok(Woff2Font {
                    scope,
                    woff_header,
                    table_directory,
                    collection_directory,
                    table_data_block,
                })
            }
            _ => Err(ParseError::BadVersion),
        }
    }
}

impl FontTableProvider for Woff2TableProvider {
    fn table_data<'a>(&'a self, tag: u32) -> Result<Option<Cow<'a, [u8]>>, ParseError> {
        Ok(self.tables.get(&tag).map(|table| Cow::from(table.as_ref())))
    }

    fn has_table(&self, tag: u32) -> bool {
        self.tables.contains_key(&tag)
    }
}

impl SfntVersion for Woff2TableProvider {
    fn sfnt_version(&self) -> u32 {
        self.flavor
    }
}

impl<'a> ReadBinary<'a> for Woff2Header {
    type HostType = Self;

    fn read(ctxt: &mut ReadCtxt<'a>) -> Result<Self, ParseError> {
        let signature = ctxt.read_u32be()?;
        match signature {
            MAGIC => {
                let flavor = ctxt.read_u32be()?;
                let length = ctxt.read_u32be()?;
                let num_tables = ctxt.read_u16be()?;
                let reserved = ctxt.read_u16be()?;
                // The header includes a reserved field; this MUST be set to zero. If this field is
                // non-zero, a conforming user agent MUST reject the file as invalid.
                ctxt.check(reserved == 0)?;
                let total_sfnt_size = ctxt.read_u32be()?;
                let total_compressed_size = ctxt.read_u32be()?;
                // The WOFF majorVersion and minorVersion fields specify the version number for a
                // given WOFF file, which can be based on the version number of the input font but
                // is not required to be. These fields have no effect on font loading or usage
                // behavior in user agents.
                let _major_version = ctxt.read_u16be()?;
                let _minor_version = ctxt.read_u16be()?;
                let meta_offset = ctxt.read_u32be()?;
                let meta_length = ctxt.read_u32be()?;
                let meta_orig_length = ctxt.read_u32be()?;
                let priv_offset = ctxt.read_u32be()?;
                let priv_length = ctxt.read_u32be()?;

                Ok(Woff2Header {
                    flavor,
                    length,
                    num_tables,
                    total_sfnt_size,
                    total_compressed_size,
                    _major_version,
                    _minor_version,
                    meta_offset,
                    meta_length,
                    meta_orig_length,
                    priv_offset,
                    priv_length,
                })
            }
            _ => Err(ParseError::BadVersion),
        }
    }
}

impl<'a> ReadBinaryDep<'a> for TableDirectoryEntry {
    type Args = usize;
    type HostType = Self;

    fn read_dep(ctxt: &mut ReadCtxt<'a>, offset: usize) -> Result<Self, ParseError> {
        let flags = ctxt.read_u8()?;
        let tag = if flags & BITS_0_TO_5 == 63 {
            // Tag is the following 4 bytes
            ctxt.read_u32be()
        } else {
            Ok(KNOWN_TABLE_TAGS[usize::from(flags & BITS_0_TO_5)])
        }?;
        let transformation_version = flags & 0xC0;
        let orig_length = ctxt.read::<U32Base128>()?;

        let transform_length = match (transformation_version, tag) {
            (3, tag::GLYF) | (3, tag::LOCA) => None,
            (_, tag::GLYF) | (_, tag::LOCA) | (1, tag::HMTX) => Some(ctxt.read::<U32Base128>()?),
            (0, _) => None,
            _ => Some(ctxt.read::<U32Base128>()?),
        };

        Ok(TableDirectoryEntry {
            tag,
            offset,
            orig_length,
            transform_length,
        })
    }
}

impl<'a> ReadBinary<'a> for TransformedGlyphTable<'a> {
    type HostType = Self;

    fn read(ctxt: &mut ReadCtxt<'a>) -> Result<Self, ParseError> {
        let _version = ctxt.read_u32be()?;
        let num_glyphs = ctxt.read_u16be()?;
        let index_format = ctxt.read_u16be()?;

        let n_contour_stream_size = usize::try_from(ctxt.read_u32be()?)?;
        let n_points_stream_size = usize::try_from(ctxt.read_u32be()?)?;
        let flag_stream_size = usize::try_from(ctxt.read_u32be()?)?;
        let glyph_stream_size = usize::try_from(ctxt.read_u32be()?)?;
        let composite_stream_size = usize::try_from(ctxt.read_u32be()?)?;
        let bbox_stream_size = usize::try_from(ctxt.read_u32be()?)?;
        let instruction_stream_size = usize::try_from(ctxt.read_u32be()?)?;

        // Build sub contexts for each of the streams, then iterate a glyph at a time pulling from
        // those contexts as needed
        let n_contour_scope = ReadScope::new(ctxt.read_slice(n_contour_stream_size)?);
        let n_points_scope = ReadScope::new(ctxt.read_slice(n_points_stream_size)?);
        let flag_scope = ReadScope::new(ctxt.read_slice(flag_stream_size)?);
        let glyph_scope = ReadScope::new(ctxt.read_slice(glyph_stream_size)?);
        let composite_scope = ReadScope::new(ctxt.read_slice(composite_stream_size)?);
        // The total number of bytes in bboxBitmap is equal to 4 * floor((numGlyphs + 31) / 32).
        // The bits are packed so that glyph number 0 corresponds to the most significant bit of
        // the first byte, glyph number 7 corresponds to the least significant bit of the first
        // byte, glyph number 8 corresponds to the most significant bit of the second byte, and so
        // on. A bit=1 value indicates an explicitly set bounding box.
        let bbox_bitmap_length = (4. * ((num_glyphs + 31) as f64 / 32.).floor()) as usize;
        let bbox_bitmap_scope = ReadScope::new(ctxt.read_slice(bbox_bitmap_length)?);
        let bbox_scope = ReadScope::new(ctxt.read_slice(bbox_stream_size - bbox_bitmap_length)?);
        let instruction_scope = ReadScope::new(ctxt.read_slice(instruction_stream_size)?);

        Ok(TransformedGlyphTable {
            num_glyphs,
            _index_format: index_format,
            n_contour_scope,
            n_points_scope,
            flag_scope,
            glyph_scope,
            composite_scope,
            bbox_bitmap_scope,
            bbox_scope,
            instruction_scope,
        })
    }
}

impl<'a> ReadBinaryDep<'a> for Woff2GlyfTable {
    type Args = (&'a TableDirectoryEntry, &'a LocaTable<'a>);
    type HostType = GlyfTable<'a>;

    fn read_dep(
        ctxt: &mut ReadCtxt<'a>,
        (entry, loca): Self::Args,
    ) -> Result<Self::HostType, ParseError> {
        if entry.transform_length.is_some() {
            let table = ctxt.read::<TransformedGlyphTable<'_>>()?;

            // Read a glyph at a time and handle reconstructing each one
            let num_glyphs = usize::from(table.num_glyphs);
            let mut n_contour_ctxt = table.n_contour_scope.ctxt();
            let mut n_points_ctxt = table.n_points_scope.ctxt();
            let mut flags_ctxt = table.flag_scope.ctxt();
            let mut glyphs_ctxt = table.glyph_scope.ctxt();
            let mut instructions_ctxt = table.instruction_scope.ctxt();
            let mut composite_ctxt = table.composite_scope.ctxt();
            let bbox_bitmap = BitSlice::new(table.bbox_bitmap_scope.data());
            let mut bbox_bitmap_ctxt = table.bbox_scope.ctxt();

            let mut records = Vec::with_capacity(num_glyphs);
            for i in 0..num_glyphs {
                let number_of_contours = n_contour_ctxt.read_i16be()?;

                let glyf_record = match number_of_contours {
                    0 => {
                        // Empty glyph
                        GlyfRecord::Empty
                    }
                    -1 => {
                        // Composite glyph
                        let glyphs = composite_ctxt.read::<CompositeGlyphs>()?;

                        // Step 3a.
                        let instruction_length = if glyphs.have_instructions {
                            usize::from(glyphs_ctxt.read::<PackedU16>()?)
                        } else {
                            0
                        };
                        let instructions = instructions_ctxt.read_slice(instruction_length)?;

                        // A composite glyph MUST have an explicitly supplied bounding box.
                        // A decoder MUST check for presence of the bounding box info as part of
                        // the composite glyph record and MUST NOT load a font file with the
                        // composite bounding box data missing.
                        match bbox_bitmap.get(i) {
                            Some(true) => (),
                            _ => return Err(ParseError::BadIndex),
                        }

                        // Read the bounding box
                        let bounding_box = bbox_bitmap_ctxt.read::<BoundingBox>()?;

                        GlyfRecord::Parsed(Glyph {
                            number_of_contours,
                            bounding_box,
                            data: GlyphData::Composite {
                                glyphs: glyphs.glyphs,
                                instructions,
                            },
                        })
                    }
                    num if num > 0 => {
                        // Simple glyph
                        let data = Self::decode_simple_glyph(
                            &mut n_points_ctxt,
                            &mut flags_ctxt,
                            &mut glyphs_ctxt,
                            &mut instructions_ctxt,
                            number_of_contours,
                        )?;

                        let bounding_box = match bbox_bitmap.get(i) {
                            Some(true) => bbox_bitmap_ctxt.read::<BoundingBox>(),
                            Some(false) => Ok(data.bounding_box()),
                            _ => return Err(ParseError::BadIndex),
                        }?;

                        GlyfRecord::Parsed(Glyph {
                            number_of_contours,
                            bounding_box,
                            data: GlyphData::Simple(data),
                        })
                    }
                    _ => return Err(ParseError::BadValue),
                };

                records.push(glyf_record);
            }

            Ok(GlyfTable { records })
        } else {
            // glyf table has not been transformed
            ctxt.read_dep::<GlyfTable<'_>>(loca)
        }
    }
}

impl<'a> ReadBinaryDep<'a> for Woff2LocaTable {
    type Args = (&'a TableDirectoryEntry, usize, IndexToLocFormat);
    type HostType = LocaTable<'a>;

    fn read_dep(
        ctxt: &mut ReadCtxt<'a>,
        (loca_entry, num_glyphs, index_to_loc_format): Self::Args,
    ) -> Result<Self::HostType, ParseError> {
        if loca_entry.transform_length.is_some() {
            Ok(LocaTable::empty())
        } else {
            ctxt.read_dep::<LocaTable<'_>>((num_glyphs, index_to_loc_format))
        }
    }
}

impl<'a> ReadBinaryDep<'a> for Woff2HmtxTable {
    type Args = (&'a TableDirectoryEntry, &'a GlyfTable<'a>, usize, usize);
    type HostType = HmtxTable<'a>;

    /// Read hmtx table from WOFF2 file
    ///
    /// num_h_metrics is defined by the `hhea` table
    fn read_dep(
        ctxt: &mut ReadCtxt<'a>,
        (hmtx_entry, glyf, num_glyphs, num_h_metrics): Self::Args,
    ) -> Result<Self::HostType, ParseError> {
        if hmtx_entry.transform_length.is_some() {
            let flags = ctxt.read::<HmtxTableFlag>()?;
            let advance_width_stream = ctxt.read_array::<U16Be>(num_h_metrics)?;

            let lsb = if flags.lsb_is_present() {
                // read the lsb stream
                ReadArrayCow::Borrowed(ctxt.read_array::<I16Be>(num_h_metrics)?)
            } else {
                // Reconstitute lsb from glyf
                //
                // The transformation version "1" exploits the built-in redundancy of the TrueType
                // glyphs where the outlines of the glyphs designed according to the TrueType
                // recommendations would likely have their left side bearing values equal to xMin
                // value of the glyph bounding box.
                //
                // If the hmtx table transform is both applicable and desired, the encoder MUST
                // check that leftSideBearing values match the xMin values of the glyph bounding
                // box for every glyph in a font (or check that leftSideBearing == 0 for an empty
                // glyph)
                ReadArrayCow::Owned(
                    glyf.records
                        .iter()
                        .map(|glyf_record| match glyf_record {
                            GlyfRecord::Empty => 0,
                            GlyfRecord::Present { .. } => unreachable!(),
                            GlyfRecord::Parsed(glyph) => glyph.bounding_box.x_min,
                        })
                        .collect(),
                )
            };

            let length = num_glyphs
                .checked_sub(num_h_metrics)
                .ok_or(ParseError::BadIndex)?;
            let left_side_bearings = if flags.left_side_bearing_is_present() {
                ReadArrayCow::Borrowed(ctxt.read_array::<I16Be>(length)?)
            } else {
                // Reconstitute from glyf
                ReadArrayCow::Owned(
                    glyf.records
                        .iter()
                        .map(|glyf_record| match glyf_record {
                            GlyfRecord::Empty => 0,
                            GlyfRecord::Present { .. } => unreachable!(),
                            GlyfRecord::Parsed(glyph) => glyph.bounding_box.x_min,
                        })
                        .collect(),
                )
            };

            let h_metrics = lsb
                .iter()
                .zip(advance_width_stream.iter())
                .map(|(lsb, advance_width)| LongHorMetric { advance_width, lsb })
                .collect();

            Ok(HmtxTable {
                h_metrics: ReadArrayCow::Owned(h_metrics),
                left_side_bearings,
            })
        } else {
            ctxt.read_dep::<HmtxTable<'_>>((num_glyphs, num_h_metrics))
        }
    }
}

impl<'a> ReadFrom<'a> for WoffFlag {
    type ReadType = U8;

    fn from(flag: u8) -> Self {
        WoffFlag::new(flag)
    }
}

// Parse "255UInt16" Data Type
// https://w3c.github.io/woff/woff2/#255UInt16-0
impl<'a> ReadBinary<'a> for PackedU16 {
    type HostType = u16;

    fn read(ctxt: &mut ReadCtxt<'a>) -> Result<u16, ParseError> {
        match ctxt.read_u8()? {
            253 => ctxt.read_u16be(),
            254 => ctxt
                .read_u8()
                .map(|value| u16::from(value) + LOWEST_UCODE * 2),
            255 => ctxt.read_u8().map(|value| u16::from(value) + LOWEST_UCODE),
            code => Ok(u16::from(code)),
        }
        .map_err(ParseError::from)
    }
}

// Parse "UIntBase128" Data Type
// https://w3c.github.io/woff/woff2/#UIntBase128-0
impl<'a> ReadBinary<'a> for U32Base128 {
    type HostType = u32;

    fn read(ctxt: &mut ReadCtxt<'a>) -> Result<u32, ParseError> {
        let mut accum = 0u32;

        for i in 0..5 {
            let byte = ctxt.read_u8()?;

            // No leading 0's
            if i == 0 && byte == 0x80 {
                return Err(ParseError::BadValue);
            }

            // If any of the top 7 bits are set then << 7 would overflow
            if accum & 0xFE000000 != 0 {
                return Err(ParseError::BadValue);
            }

            // value = old value times 128 + (byte bitwise-and 127)
            accum = (accum << 7) | u32::from(byte & 0x7F);

            // Spin until most significant bit of data byte is false
            if byte & 0x80 == 0 {
                return Ok(accum);
            }
        }

        // UIntBase128 sequence exceeds 5 bytes
        Err(ParseError::BadValue)
    }
}

impl<'a> ReadFrom<'a> for HmtxTableFlag {
    type ReadType = U8;

    fn from(flag: u8) -> Self {
        HmtxTableFlag::from_bits_truncate(flag)
    }
}

impl WoffFlag {
    fn new(flag: u8) -> Self {
        WoffFlag(flag)
    }

    fn bytes_to_read(&self) -> usize {
        usize::from(self.xy_triplet().byte_count)
    }

    fn is_on_curve_point(&self) -> bool {
        // WOFF2 says this about the MSB of flags:
        // The most significant bit of a flag indicates whether the point is on- or off-curve point.
        // The OpenType equivalent of this bit (Simple Glyph Flags) is defined as:
        // Bit 0: If set, the point is on the curve; otherwise, it is off the curve.
        // However it appears that in WOFF2 the bit is cleared to indicate that it is on-curve.
        // I.e. opposite to OpenType. MicroType, which WOFF2 is based on adds:
        // if the most significant bit is 0, then the point is on-curve.
        self.0 & 0x80 == 0
    }

    fn xy_triplet(&self) -> &XYTriplet {
        &COORD_LUT[usize::from(self.0 & 0x7F)]
    }
}

impl From<WoffFlag> for SimpleGlyphFlag {
    fn from(woff_flag: WoffFlag) -> Self {
        if woff_flag.is_on_curve_point() {
            SimpleGlyphFlag::ON_CURVE_POINT
        } else {
            SimpleGlyphFlag::empty()
        }
    }
}

impl Woff2GlyfTable {
    fn compute_end_pts_of_contours(
        n_points_ctxt: &mut ReadCtxt<'_>,
        number_of_contours: i16,
    ) -> Result<(Vec<u16>, u16), ParseError> {
        // Read numberOfContours 255UInt16 values from the nPoints stream. Each of
        // these is the number of points of that contour. Convert this into the
        // endPtsOfContours[] array by computing the cumulative sum, then
        // subtracting one.

        // Also, the sum of all the values in the array is the total number of
        // points in the glyph, nPoints.
        let mut n_points = 0;
        let end_pts_of_contours = (0..number_of_contours)
            .map(|_i| {
                n_points_ctxt.read::<PackedU16>().map(|n_contours| {
                    n_points += n_contours;
                    n_points - 1
                })
            })
            .collect::<Result<Vec<_>, _>>()?;

        Ok((end_pts_of_contours, n_points))
    }

    fn decode_coordinates(flag: WoffFlag, coordinates: ReadArray<'_, U8>) -> Point {
        let xy_triplet = flag.xy_triplet();

        let data = coordinates.iter().fold(0u32, |mut data, byte| {
            data <<= 8;
            data |= u32::from(byte);
            data
        });

        // Extract x-bits and y-bits from the data value
        Point(xy_triplet.dx(data), xy_triplet.dy(data))
    }

    fn decode_simple_glyph<'a>(
        n_points_ctxt: &mut ReadCtxt<'_>,
        flags_ctxt: &mut ReadCtxt<'_>,
        glyphs_ctxt: &mut ReadCtxt<'_>,
        instructions_ctxt: &mut ReadCtxt<'a>,
        number_of_contours: i16,
    ) -> Result<SimpleGlyph<'a>, ParseError> {
        // Step 1. from spec section 5.1, Decoding of Simple Glyphs
        let (end_pts_of_contours, n_points) =
            Self::compute_end_pts_of_contours(n_points_ctxt, number_of_contours)?;

        // Step 2.
        let flags = flags_ctxt.read_array::<WoffFlag>(usize::from(n_points))?;

        // Step 3.
        let mut prev_point = Point(0, 0);
        let mut points = Vec::with_capacity(flags.len());
        for flag in flags.iter() {
            let coordinates = glyphs_ctxt.read_array::<U8>(flag.bytes_to_read())?;
            let point = Self::decode_coordinates(flag, coordinates);

            // The x and y coordinates are stored as deltas against the previous point, with the
            // first one being implicitly against (0, 0). Here we resolve these deltas into
            // absolute (x, y) values.
            prev_point = Point(prev_point.0 + point.0, prev_point.1 + point.1);
            points.push(prev_point);
        }

        // Step 4.
        let instruction_length = usize::from(glyphs_ctxt.read::<PackedU16>()?);

        // Step 5.
        let instructions = instructions_ctxt.read_slice(instruction_length)?;

        Ok(SimpleGlyph {
            end_pts_of_contours,
            instructions,
            flags: flags.iter().map(std::convert::From::from).collect(),
            coordinates: points,
        })
    }
}

impl TableDirectoryEntry {
    fn length(&self) -> usize {
        self.transform_length.unwrap_or(self.orig_length) as usize
    }

    /// Read the contents of a table entry
    pub fn read_table<'a>(&self, scope: &ReadScope<'a>) -> Result<ReadBuf<'a>, ParseError> {
        let table_data = scope.offset_length(self.offset, self.length())?;

        Ok(ReadBuf::from(table_data.data()))
    }
}

impl HmtxTableFlag {
    pub fn lsb_is_present(self) -> bool {
        self & Self::LSB_ABSENT == Self::empty()
    }

    pub fn left_side_bearing_is_present(self) -> bool {
        self & Self::LEFT_SIDE_BEARING_ABSENT == Self::empty()
    }
}

impl<'a> BitSlice<'a> {
    pub fn new(data: &'a [u8]) -> Self {
        BitSlice { data }
    }

    pub fn get(&self, index: usize) -> Option<bool> {
        if index >= self.len() {
            return None;
        }

        // Find byte that holds the bit we're after
        let byte_index = index / 8;
        // The bits are packed so that glyph number 0 corresponds to the most significant bit of
        // the first byte, glyph number 7 corresponds to the least significant bit of the first
        // byte, glyph number 8 corresponds to the most significant bit of the second byte,
        // and so on.
        let shl = 8 - (index % 8) - 1;
        let mask = 1 << shl;

        Some(self.data[byte_index] & mask == mask)
    }

    pub fn len(&self) -> usize {
        self.data.len() * 8
    }
}

// The FontTableProvider implementation for WOFF2 provides some challenges because there's
// dependencies between the tables. The implementation as it stands takes the somewhat brute force
// approach of eager loading all the tables up front, which makes accessing them individually later
// much easier.
impl Woff2TableProvider {
    fn new<'a>(woff: &Woff2Font<'a>, index: usize) -> Result<Self, ReadWriteError> {
        let mut tables = HashMap::with_capacity(woff.table_directory.len());

        // if hmtx is transformed then that means we have to parse glyf
        // otherwise we only have to parse glyf if it's transformed
        let hmtx_entry = woff.find_table_entry(tag::HMTX, index);
        let glyf_entry = woff.find_table_entry(tag::GLYF, index);
        let hmtx_is_transformed = hmtx_entry
            .map(|entry| entry.transform_length.is_some())
            .unwrap_or(false);
        let glyf_is_transformed = glyf_entry
            .map(|entry| entry.transform_length.is_some())
            .unwrap_or(false);

        if hmtx_is_transformed || glyf_is_transformed {
            let glyf_entry = glyf_entry.ok_or(ParseError::MissingValue)?;
            let glyf_table = glyf_entry.read_table(&woff.table_data_block_scope())?;
            let mut head = read_table!(woff, tag::HEAD, HeadTable, index)?;
            let maxp = read_table!(woff, tag::MAXP, MaxpTable, index)?;
            let hhea = read_table!(woff, tag::HHEA, HheaTable, index)?;
            let loca_entry = woff
                .find_table_entry(tag::LOCA, index)
                .ok_or(ParseError::MissingValue)?;
            let loca = loca_entry.read_table(&woff.table_data_block_scope())?;
            let loca = loca.scope().read_dep::<Woff2LocaTable>((
                &loca_entry,
                usize::from(maxp.num_glyphs),
                head.index_to_loc_format,
            ))?;
            let glyf = glyf_table
                .scope()
                .read_dep::<Woff2GlyfTable>((&glyf_entry, &loca))?;

            if hmtx_is_transformed {
                let hmtx_entry = hmtx_entry.ok_or(ParseError::MissingValue)?;
                let hmtx_table = hmtx_entry.read_table(&woff.table_data_block_scope())?;
                let hmtx = hmtx_table.scope().read_dep::<Woff2HmtxTable>((
                    &hmtx_entry,
                    &glyf,
                    usize::from(maxp.num_glyphs),
                    usize::from(hhea.num_h_metrics),
                ))?;
                let ((), data) = write::buffer::<_, HmtxTable<'_>>(&hmtx, ())?;
                tables.insert(tag::HMTX, Box::from(data.into_inner()));
            }

            // Add head, glyf and loca
            let (loca, data) = write::buffer::<_, GlyfTable<'_>>(glyf, head.index_to_loc_format)?;
            tables.insert(tag::GLYF, Box::from(data.into_inner()));
            match loca.offsets.last() {
                Some(&last) if (last / 2) > u32::from(std::u16::MAX) => {
                    head.index_to_loc_format = IndexToLocFormat::Long
                }
                _ => {}
            }
            let (_placeholder, data) = write::buffer::<_, HeadTable>(&head, ())?;
            tables.insert(tag::HEAD, Box::from(data.into_inner()));
            let ((), data) = write::buffer::<_, owned::LocaTable>(loca, head.index_to_loc_format)?;
            tables.insert(tag::LOCA, Box::from(data.into_inner()));
        }

        // Add remaining tables
        for table_entry in Self::table_directory(&woff, index) {
            let tag = table_entry.tag;
            if tables.contains_key(&tag) {
                // Skip tables that were inserted above
                continue;
            }
            let data: Box<[u8]> = Box::from(
                table_entry
                    .read_table(&woff.table_data_block_scope())?
                    .scope()
                    .data(),
            );
            tables.insert(tag, data);
        }

        Ok(Woff2TableProvider {
            flavor: woff.woff_header.flavor,
            tables,
        })
    }

    pub fn into_tables(self) -> HashMap<u32, Box<[u8]>> {
        self.tables
    }

    fn table_directory<'a>(
        woff: &'a Woff2Font<'a>,
        index: usize,
    ) -> impl Iterator<Item = &TableDirectoryEntry> {
        if let Some(collection_directory) = &woff.collection_directory {
            Either::Left(
                collection_directory
                    .get(index)
                    .map(|font| font.table_entries(&woff))
                    .unwrap(), // NOTE(unwrap): It's assumed that index is determined valid in woff2_read_tables
            )
        } else {
            Either::Right(woff.table_directory.iter())
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_compute_end_pts_of_contours() {
        let data = [2u8, 4];
        let mut ctxt = ReadScope::new(&data).ctxt();
        let (end_pts_of_contours, n_points) =
            Woff2GlyfTable::compute_end_pts_of_contours(&mut ctxt, data.len() as i16)
                .expect("unable to decode simple glyph");
        assert_eq!(end_pts_of_contours, vec![1, 5]);
        assert_eq!(n_points, 6);
    }

    #[test]
    fn test_xy_triplet_dx_dy() {
        let triplet = XYTriplet {
            byte_count: 2,
            x_bits: 8,
            y_bits: 8,
            delta_x: 1,
            delta_y: 257,
            x_is_negative: true,
            y_is_negative: false,
        };
        let data = 0x7AD2;

        assert_eq!(triplet.dx(data), -(0x7A + 1));
        assert_eq!(triplet.dy(data), 0xD2 + 257);
    }

    #[test]
    fn test_bit_slice_len() {
        let inner = vec![0b1000000, 0b00000001];
        let bits = BitSlice::new(&inner);

        assert_eq!(bits.len(), 16);
    }

    #[test]
    fn test_bit_slice_get_out_of_bounds() {
        let inner = vec![0b1000000, 0b00000001];
        let bits = BitSlice::new(&inner);

        assert_eq!(bits.get(16), None);
    }

    #[test]
    fn test_bit_slice_start() {
        let inner = vec![0b1000_0000, 0b0000_0000];
        let bits = BitSlice::new(&inner);

        assert_eq!(bits.get(0), Some(true));
    }

    #[test]
    fn test_bit_slice_middle() {
        let inner = vec![0b1111_1110, 0b1111_1111];
        let bits = BitSlice::new(&inner);

        assert_eq!(bits.get(7), Some(false));
    }

    #[test]
    fn test_bit_slice_end() {
        let inner = vec![0b0000_0000, 0b0000_0001];
        let bits = BitSlice::new(&inner);

        assert_eq!(bits.get(15), Some(true));
    }

    #[test]
    fn test_read_packed_u16() {
        assert_eq!(
            ReadScope::new(&[255, 253]).read::<PackedU16>().unwrap(),
            506
        );
        assert_eq!(ReadScope::new(&[254, 0]).read::<PackedU16>().unwrap(), 506);
        assert_eq!(
            ReadScope::new(&[253, 1, 250]).read::<PackedU16>().unwrap(),
            506
        );
        assert_eq!(ReadScope::new(&[5u8]).read::<PackedU16>().unwrap(), 5);
        assert!(ReadScope::new(&[254u8]).read::<PackedU16>().is_err());
    }

    #[test]
    fn test_read_u32base128() {
        assert_eq!(ReadScope::new(&[0x3F]).read::<U32Base128>().unwrap(), 63);
        assert_eq!(
            ReadScope::new(&[0x85, 0x07]).read::<U32Base128>().unwrap(),
            647
        );
        assert_eq!(
            ReadScope::new(&[0xFF, 0xFA, 0x00])
                .read::<U32Base128>()
                .unwrap(),
            2_096_384
        );
        assert_eq!(
            ReadScope::new(&[0x8F, 0xFF, 0xFF, 0xFF, 0x7F])
                .read::<U32Base128>()
                .unwrap(),
            0xFFFFFFFF
        );
    }

    #[test]
    fn test_read_u32base128_err() {
        // Leading zeros
        assert!(ReadScope::new(&[0x80, 0x01]).read::<U32Base128>().is_err());

        // Overflow
        assert!(ReadScope::new(&[0xFF, 0xFF, 0xFF, 0xFF, 0x7F])
            .read::<U32Base128>()
            .is_err());

        // More than 5 bytes
        assert!(ReadScope::new(&[0x8F, 0xFF, 0xFF, 0xFF, 0xFF, 0x7F])
            .read::<U32Base128>()
            .is_err());
    }
}