1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
//! A pointer type for heap allocation.
//!
//! [`Box<T, B>`], casually referred to as a 'box', provides the simplest form of allocation in
//! Rust. Boxes provide ownership for this allocation, and drop their contents when they go out of
//! scope.
//!
//! # Examples
//!
//! Move a value from the stack to the heap by creating a [`Box`]:
//!
//! ```
//! use alloc_wg::boxed::Box;
//!
//! let val: u8 = 5;
//! # #[allow(unused_variables)]
//! let boxed: Box<u8> = Box::new(val);
//! ```
//!
//! Move a value from a [`Box`] back to the stack by [dereferencing]:
//!
//! ```
//! use alloc_wg::boxed::Box;
//!
//! let boxed: Box<u8> = Box::new(5);
//! # #[allow(unused_variables)]
//! let val: u8 = *boxed;
//! ```
//!
//! Creating a recursive data structure:
//!
//! ```
//! use alloc_wg::boxed::Box;
//!
//! #[derive(Debug)]
//! enum List<T> {
//!     Cons(T, Box<List<T>>),
//!     Nil,
//! }
//!
//! fn main() {
//!     let list: List<i32> = List::Cons(1, Box::new(List::Cons(2, Box::new(List::Nil))));
//!     println!("{:?}", list);
//! }
//! ```
//!
//! This will print `Cons(1, Cons(2, Nil))`.
//!
//! Recursive structures must be boxed, because if the definition of `Cons`
//! looked like this:
//!
//! ```compile_fail,E0072
//! # enum List<T> {
//! Cons(T, List<T>),
//! # }
//! ```
//!
//! It wouldn't work. This is because the size of a `List` depends on how many elements are in the
//! list, and so we don't know how much memory to allocate for a `Cons`. By introducing a [`Box<T,
//! D>`], which has a defined size, we know how big `Cons` needs to be.
//!
//! # Memory layout
//!
//! For non-zero-sized values, a [`Box`] will use the [`Global`] allocator for its allocation if no
//! allocator was specified. It is valid to convert both ways between a [`Box`] and a raw pointer
//! allocated with the same allocator, given that the [`Layout`] used with the allocator is
//! correct for the type. More precisely, a `value: *mut T` that has been allocated with the
//! [`Global`] allocator with `Layout::for_value(&*value)` may be converted into a box using
//! [`Box::<T>::from_raw(value)`]. For other allocators, [`Box::<T>::from_raw_in(value, alloc)`] may
//! be used. Conversely, the memory backing a `value: *mut T` obtained from [`Box::<T>::into_raw`]
//! may be deallocated using the specific allocator with [`Layout::for_value(&*value)`].
//!
//!
//! [dereferencing]: core::ops::Deref
//! [`Box`]: crate::boxed::Box
//! [`Box<T>`]: crate::boxed::Box
//! [`Box::<T>::from_raw(value)`]: crate::boxed::Box::from_raw
//! [`Box::<T>::from_raw(value, alloc)`]: crate::boxed::Box::from_raw_in
//! [`Box::<T>::into_raw`]: crate::boxed::Box::into_raw
//! [`Global`]: crate::alloc::Global
//! [`Layout`]: crate::alloc::Layout
//! [`Layout::for_value(&*value)`]: crate::alloc::Layout::for_value

use crate::{
    alloc::{AbortAlloc, AllocRef, BuildAlloc, BuildDealloc, DeallocRef, Global, NonZeroLayout},
    UncheckedResultExt,
};
use core::{
    alloc::Layout,
    fmt,
    marker::PhantomData,
    mem,
    ops::{Deref, DerefMut},
    pin::Pin,
    ptr::NonNull,
    slice,
};

/// A pointer type for heap allocation.
///
/// See the [module-level documentation](index.html) for more.
// Using `NonNull` + `PhantomData` instead of `Unique` to stay on stable as long as possible
pub struct Box<T: ?Sized, B: BuildDealloc = AbortAlloc<Global>>(NonNull<T>, B, PhantomData<T>);

#[allow(clippy::use_self)]
impl<T> Box<T> {
    /// Allocates memory on the heap and then places `x` into it.
    ///
    /// This doesn't actually allocate if `T` is zero-sized.
    ///
    /// # Example
    ///
    /// ```
    /// use alloc_wg::boxed::Box;
    ///
    /// # #[allow(unused_variables)]
    /// let five = Box::new(5);
    /// ```
    pub fn new(x: T) -> Self {
        Self::new_in(x, AbortAlloc(Global))
    }

    /// Constructs a new box with uninitialized contents.
    ///
    /// # Example
    ///
    /// ```
    /// use alloc_wg::boxed::Box;
    ///
    /// let mut five = Box::<u32>::new_uninit();
    ///
    /// let five = unsafe {
    ///     // Deferred initialization:
    ///     five.as_mut_ptr().write(5);
    ///
    ///     five.assume_init()
    /// };
    ///
    /// assert_eq!(*five, 5)
    /// ```
    pub fn new_uninit() -> Box<mem::MaybeUninit<T>> {
        Self::new_uninit_in(AbortAlloc(Global))
    }

    /// Constructs a new `Pin<Box<T>>`. If `T` does not implement `Unpin`, then
    /// `x` will be pinned in memory and unable to be moved.
    #[inline(always)]
    pub fn pin(x: T) -> Pin<Self> {
        Self::new(x).into()
    }
}

#[allow(clippy::use_self)]
impl<T, B: BuildDealloc> Box<T, B>
where
    B: BuildAlloc,
{
    /// Allocates memory with the given allocator and then places `x` into it.
    ///
    /// This doesn't actually allocate if `T` is zero-sized.
    ///
    /// # Example
    ///
    /// ```
    /// use alloc_wg::{
    ///     alloc::{AbortAlloc, Global},
    ///     boxed::Box,
    /// };
    ///
    /// # #[allow(unused_variables)]
    /// let five: Box<_, AbortAlloc<Global>> = Box::new_in(5, AbortAlloc(Global));
    /// ```
    pub fn new_in(x: T, a: B::AllocRef) -> Self
    where
        B::AllocRef: AllocRef<Error = crate::Never>,
    {
        unsafe { Self::try_new_in(x, a).unwrap_unchecked() }
    }

    /// Tries to allocate memory with the given allocator and then places `x` into it.
    ///
    /// This doesn't actually allocate if `T` is zero-sized.
    ///
    /// # Example
    ///
    /// ```
    /// use alloc_wg::{alloc::Global, boxed::Box};
    ///
    /// # #[allow(unused_variables)]
    /// let five: Box<_, Global> = Box::try_new_in(5, Global)?;
    /// # Ok::<_, alloc_wg::alloc::AllocErr>(())
    /// ```
    pub fn try_new_in(x: T, mut a: B::AllocRef) -> Result<Self, <B::AllocRef as AllocRef>::Error> {
        let ptr = if let Ok(layout) = NonZeroLayout::new::<T>() {
            let ptr = a.alloc(layout)?.cast::<T>();
            unsafe {
                ptr.as_ptr().write(x);
            }
            ptr
        } else {
            NonNull::dangling()
        };
        Ok(Self(ptr, a.get_build_alloc(), PhantomData))
    }

    /// Constructs a new box with uninitialized contents in a specified allocator.
    ///
    /// # Example
    ///
    /// ```
    /// use alloc_wg::{
    ///     alloc::{AbortAlloc, Global},
    ///     boxed::Box,
    /// };
    ///
    /// let mut five = Box::<u32, AbortAlloc<Global>>::new_uninit_in(AbortAlloc(Global));
    ///
    /// let five = unsafe {
    ///     // Deferred initialization:
    ///     five.as_mut_ptr().write(5);
    ///
    ///     five.assume_init()
    /// };
    ///
    /// assert_eq!(*five, 5)
    /// ```
    pub fn new_uninit_in(a: B::AllocRef) -> Box<mem::MaybeUninit<T>, B>
    where
        B::AllocRef: AllocRef<Error = crate::Never>,
    {
        unsafe { Self::try_new_uninit_in(a).unwrap_unchecked() }
    }

    /// Tries to construct a new box with uninitialized contents in a specified allocator.
    ///
    /// # Example
    ///
    /// ```
    /// use alloc_wg::{alloc::Global, boxed::Box};
    ///
    /// let mut five = Box::<u32, Global>::try_new_uninit_in(Global)?;
    ///
    /// let five = unsafe {
    ///     // Deferred initialization:
    ///     five.as_mut_ptr().write(5);
    ///
    ///     five.assume_init()
    /// };
    ///
    /// assert_eq!(*five, 5);
    /// # Ok::<_, alloc_wg::alloc::AllocErr>(())
    /// ```
    pub fn try_new_uninit_in(
        mut a: B::AllocRef,
    ) -> Result<Box<mem::MaybeUninit<T>, B>, <B::AllocRef as AllocRef>::Error> {
        let ptr = if let Ok(layout) = NonZeroLayout::new::<T>() {
            let ptr: NonNull<T> = a.alloc(layout)?.cast();
            ptr
        } else {
            NonNull::dangling()
        };
        Ok(Self(ptr.cast(), a.get_build_alloc(), PhantomData))
    }

    /// Constructs a new `Pin<Box<T, A>>` with the specified allocator. If `T` does not implement
    /// `Unpin`, then `x` will be pinned in memory and unable to be moved.
    #[inline(always)]
    pub fn pin_in(x: T, a: B::AllocRef) -> Pin<Self>
    where
        B::AllocRef: AllocRef<Error = crate::Never>,
    {
        unsafe { Self::try_pin_in(x, a).unwrap_unchecked() }
    }

    /// Constructs a new `Pin<Box<T, A>>` with the specified allocator. If `T` does not implement
    /// `Unpin`, then `x` will be pinned in memory and unable to be moved.
    #[inline(always)]
    pub fn try_pin_in(x: T, a: B::AllocRef) -> Result<Pin<Self>, <B::AllocRef as AllocRef>::Error> {
        Self::try_new_in(x, a).map(Pin::from)
    }
}

#[allow(clippy::use_self)]
impl<T> Box<[T]> {
    /// Construct a new boxed slice with uninitialized contents.
    ///
    /// # Example
    ///
    /// ```
    /// use alloc_wg::boxed::Box;
    ///
    /// let mut values = Box::<[u32]>::new_uninit_slice(3);
    ///
    /// let values = unsafe {
    ///     // Deferred initialization:
    ///     values[0].as_mut_ptr().write(1);
    ///     values[1].as_mut_ptr().write(2);
    ///     values[2].as_mut_ptr().write(3);
    ///
    ///     values.assume_init()
    /// };
    ///
    /// assert_eq!(*values, [1, 2, 3]);
    /// ```
    pub fn new_uninit_slice(len: usize) -> Box<[mem::MaybeUninit<T>]> {
        Self::new_uninit_slice_in(len, AbortAlloc(Global))
    }
}

#[allow(clippy::use_self)]
impl<T, B: BuildDealloc> Box<[T], B>
where
    B: BuildAlloc,
    B::AllocRef: AllocRef<Error = crate::Never>,
{
    /// Construct a new boxed slice with uninitialized contents with the spoecified allocator.
    ///
    /// # Example
    ///
    /// ```
    /// use alloc_wg::{
    ///     alloc::{AbortAlloc, Global},
    ///     boxed::Box,
    /// };
    ///
    /// let mut values = Box::<[u32], AbortAlloc<Global>>::new_uninit_slice_in(3, AbortAlloc(Global));
    ///
    /// let values = unsafe {
    ///     // Deferred initialization:
    ///     values[0].as_mut_ptr().write(1);
    ///     values[1].as_mut_ptr().write(2);
    ///     values[2].as_mut_ptr().write(3);
    ///
    ///     values.assume_init()
    /// };
    ///
    /// assert_eq!(*values, [1, 2, 3]);
    /// ```
    pub fn new_uninit_slice_in(len: usize, a: B::AllocRef) -> Box<[mem::MaybeUninit<T>], B> {
        unsafe { Self::try_new_uninit_slice_in(len, a).unwrap_unchecked() }
    }
}

#[allow(clippy::use_self)]
impl<T, B: BuildDealloc> Box<[T], B>
where
    B: BuildAlloc,
{
    /// Tries to construct a new boxed slice with uninitialized contents with the spoecified
    /// allocator.
    ///
    /// # Example
    ///
    /// ```
    /// use alloc_wg::{alloc::Global, boxed::Box};
    ///
    /// let mut values = Box::<[u32], Global>::try_new_uninit_slice_in(3, Global)?;
    ///
    /// let values = unsafe {
    ///     // Deferred initialization:
    ///     values[0].as_mut_ptr().write(1);
    ///     values[1].as_mut_ptr().write(2);
    ///     values[2].as_mut_ptr().write(3);
    ///
    ///     values.assume_init()
    /// };
    ///
    /// assert_eq!(*values, [1, 2, 3]);
    /// # Ok::<_, alloc_wg::alloc::AllocErr>(())
    /// ```
    #[allow(clippy::type_complexity)]
    pub fn try_new_uninit_slice_in(
        len: usize,
        mut a: B::AllocRef,
    ) -> Result<Box<[mem::MaybeUninit<T>], B>, <B::AllocRef as AllocRef>::Error> {
        let ptr = if mem::size_of::<T>() == 0 || len == 0 {
            NonNull::dangling()
        } else {
            let layout =
                NonZeroLayout::array::<mem::MaybeUninit<T>>(len).expect("capacity overflow");
            a.alloc(layout)?
        };
        unsafe {
            let slice = slice::from_raw_parts_mut(ptr.cast().as_ptr(), len);
            Ok(Self(NonNull::from(slice), a.get_build_alloc(), PhantomData))
        }
    }
}

#[allow(clippy::use_self)]
impl<T, B: BuildDealloc> Box<mem::MaybeUninit<T>, B> {
    /// Converts to `Box<T, B>`.
    ///
    /// # Safety
    ///
    /// As with [`MaybeUninit::assume_init`],
    /// it is up to the caller to guarantee that the value
    /// really is in an initialized state.
    /// Calling this when the content is not yet fully initialized
    /// causes immediate undefined behavior.
    ///
    /// [`MaybeUninit::assume_init`]: core::mem::MaybeUninit::assume_init
    ///
    /// # Example
    ///
    /// ```
    /// use alloc_wg::boxed::Box;
    ///
    /// let mut five = Box::<u32>::new_uninit();
    ///
    /// let five = unsafe {
    ///     // Deferred initialization:
    ///     five.as_mut_ptr().write(5);
    ///
    ///     five.assume_init()
    /// };
    ///
    /// assert_eq!(*five, 5)
    /// ```
    #[inline]
    pub unsafe fn assume_init(mut self) -> Box<T, B> {
        let a = self.get_alloc();
        let ptr = Self::into_raw(self);
        Box::from_raw_in(ptr as _, a)
    }
}

#[allow(clippy::use_self)]
impl<T, B: BuildDealloc> Box<[mem::MaybeUninit<T>], B> {
    /// Converts to `Box<[T], B>`.
    ///
    /// # Safety
    ///
    /// As with [`MaybeUninit::assume_init`],
    /// it is up to the caller to guarantee that the values
    /// really are in an initialized state.
    /// Calling this when the content is not yet fully initialized
    /// causes immediate undefined behavior.
    ///
    /// [`MaybeUninit::assume_init`]: core::mem::MaybeUninit::assume_init
    ///
    /// # Example
    ///
    /// ```
    /// use alloc_wg::boxed::Box;
    ///
    /// let mut values = Box::<[u32]>::new_uninit_slice(3);
    ///
    /// let values = unsafe {
    ///     // Deferred initialization:
    ///     values[0].as_mut_ptr().write(1);
    ///     values[1].as_mut_ptr().write(2);
    ///     values[2].as_mut_ptr().write(3);
    ///
    ///     values.assume_init()
    /// };
    ///
    /// assert_eq!(*values, [1, 2, 3])
    /// ```
    #[inline]
    pub unsafe fn assume_init(mut self) -> Box<[T], B> {
        let a = self.get_alloc();
        let ptr = Self::into_raw(self);
        Box::from_raw_in(ptr as _, a)
    }
}

impl<T: ?Sized> Box<T> {
    /// Constructs a box from a raw pointer.
    ///
    /// After calling this function, the raw pointer is owned by the resulting `Box`.2 Specifically,
    /// the `Box` destructor will call the destructor of `T` and free the allocated memory. For
    /// this to be safe, the memory must have been allocated in accordance
    /// with the [memory layout] used by `Box` .
    ///
    /// # Safety
    ///
    /// This function is unsafe because improper use may lead to memory problems. For example, a
    /// double-free may occur if the function is called twice on the same raw pointer.
    ///
    /// # Examples
    ///
    /// Recreate a `Box` which was previously converted to a raw pointer using [`Box::into_raw`][]:
    /// ```
    /// use alloc_wg::boxed::Box;
    ///
    /// let x = Box::new(5);
    /// let ptr = Box::into_raw(x);
    /// # #[allow(unused_variables)]
    /// let x = unsafe { Box::from_raw(ptr) };
    /// ```
    /// Manually create a `Box` from scratch by using the global allocator:
    /// ```
    /// use alloc_wg::{
    ///     alloc::{alloc, Layout},
    ///     boxed::Box,
    /// };
    ///
    /// unsafe {
    ///     let ptr = alloc(Layout::new::<i32>()) as *mut i32;
    ///     *ptr = 5;
    /// # #[allow(unused_variables)]
    ///     let x = Box::from_raw(ptr);
    /// }
    /// ```
    ///
    /// [memory layout]: index.html#memory-layout
    pub unsafe fn from_raw(raw: *mut T) -> Self {
        Self::from_raw_in(raw, AbortAlloc(Global))
    }
}

impl<T: ?Sized, B: BuildDealloc> Box<T, B> {
    /// Constructs a box from a raw pointer.
    ///
    /// After calling this function, the raw pointer is owned by the resulting `Box`. Specifically,
    /// the `Box` destructor will call the destructor of `T` and free the allocated memory. For
    /// this to be safe, the memory must have been allocated in accordance
    /// with the [memory layout] used by `Box` .
    ///
    /// # Safety
    ///
    /// This function is unsafe because improper use may lead to memory problems. For example, a
    /// double-free may occur if the function is called twice on the same raw pointer.
    ///
    /// # Example
    ///
    /// Manually create a `Box` from scratch by using the global allocator:
    /// ```
    /// use alloc_wg::{
    ///     alloc::{alloc, Global, Layout},
    ///     boxed::Box,
    /// };
    ///
    /// unsafe {
    ///     let ptr = alloc(Layout::new::<i32>()) as *mut i32;
    ///     *ptr = 5;
    /// #    #[allow(unused_variables)]
    ///     let x: Box<_, Global> = Box::from_raw_in(ptr, Global);
    /// }
    /// ```
    #[inline]
    pub unsafe fn from_raw_in(raw: *mut T, mut d: B::DeallocRef) -> Self {
        Self(
            NonNull::new_unchecked(raw),
            d.get_build_dealloc(),
            PhantomData,
        )
    }

    pub fn get_alloc(&mut self) -> B::DeallocRef {
        unsafe {
            self.1
                .build_dealloc_ref(self.0.cast(), Layout::for_value(self.as_ref()))
        }
    }
    /// Consumes the `Box`, returning a wrapped raw pointer.
    ///
    /// The pointer will be properly aligned and non-null.
    ///
    /// After calling this function, the caller is responsible for the memory previously managed by
    /// the `Box`. In particular, the caller should properly destroy `T` and release the memory,
    /// taking into account the [memory layout] used by `Box`. The easiest way to do this is to
    /// convert the raw pointer back into a `Box` with the [`Box::from_raw`][] function,
    /// allowing the `Box` destructor to perform the cleanup.
    ///
    /// Note: this is an associated function, which means that you have to call it as
    /// `Box::into_raw(b)` instead of `b.into_raw()`. This is so that there is no conflict with
    /// a method on the inner type.
    ///
    /// # Examples
    /// Converting the raw pointer back into a `Box` with [`Box::from_raw`][] for automatic cleanup:
    /// ```
    /// use alloc_wg::boxed::Box;
    ///
    /// let x = Box::new(String::from("Hello"));
    /// let ptr = Box::into_raw(x);
    /// # #[allow(unused_variables)]
    /// let x = unsafe { Box::from_raw(ptr) };
    /// ```
    /// Manual cleanup by explicitly running the destructor and deallocating
    /// the memory:
    /// ```
    /// use alloc_wg::{
    ///     alloc::{dealloc, Layout},
    ///     boxed::Box,
    /// };
    /// use core::ptr;
    ///
    /// let x = Box::new(String::from("Hello"));
    /// let p = Box::into_raw(x);
    /// unsafe {
    ///     ptr::drop_in_place(p);
    ///     dealloc(p as *mut u8, Layout::new::<String>());
    /// }
    /// ```
    ///
    /// [memory layout]: index.html#memory-layout
    #[inline]
    pub fn into_raw(b: Self) -> *mut T {
        Self::into_raw_non_null(b).as_ptr()
    }

    /// Consumes the `Box`, returning the wrapped pointer as `NonNull<T>`.
    ///
    /// After calling this function, the caller is responsible for the memory previously managed by
    /// the `Box`. In particular, the caller should properly destroy `T` and release the memory.
    /// The easiest way to do so is to convert the `NonNull<T>` pointer
    /// into a raw pointer and back into a `Box` with the [`Box::from_raw`][]
    /// function.
    ///
    /// Note: this is an associated function, which means that you have to call it as
    /// `Box::into_raw_non_null(b)` instead of `b.into_raw_non_null()`. This is so that there is no
    /// conflict with a method on the inner type.
    ///
    /// # Examples
    ///
    /// ```
    /// use alloc_wg::boxed::Box;
    ///
    /// let x = Box::new(5);
    /// let ptr = Box::into_raw_non_null(x);
    ///
    /// // Clean up the memory by converting the NonNull pointer back
    /// // into a Box and letting the Box be dropped.
    /// # #[allow(unused_variables)]
    /// let x = unsafe { Box::from_raw(ptr.as_ptr()) };
    /// ```
    #[inline]
    pub fn into_raw_non_null(b: Self) -> NonNull<T> {
        // TODO: Replace with `Self::into_unique(b).into()`
        let mut ptr = b.0;
        mem::forget(b);
        unsafe { NonNull::new_unchecked(ptr.as_mut()) }
    }

    // TODO: Uncomment this when changing `NonNull` to `Unique`
    // #[inline]
    // #[doc(hidden)]
    // pub fn into_unique(b: Self) -> Unique<T> {
    //     let mut unique = b.0;
    //     mem::forget(b);
    //
    //     // Box is kind-of a library type, but recognized as a "unique pointer" by
    //     // Stacked Borrows.  This function here corresponds to "reborrowing to
    //     // a raw pointer", but there is no actual reborrow here -- so
    //     // without some care, the pointer we are returning here still carries
    //     // the tag of `b`, with `Unique` permission.
    //     // We round-trip through a mutable reference to avoid that.
    //     unsafe { Unique::new_unchecked(unique.as_mut()) }
    // }

    /// Consumes and leaks the `Box`, returning a mutable reference,
    /// `&'a mut T`. Note that the type `T` must outlive the chosen lifetime
    /// `'a`. If the type has only static references, or none at all, then this
    /// may be chosen to be `'static`.
    ///
    /// This function is mainly useful for data that lives for the remainder of
    /// the program's life. Dropping the returned reference will cause a memory
    /// leak. If this is not acceptable, the reference should first be wrapped
    /// with the [`Box::from_raw`][] function producing a `Box`. This `Box` can
    /// then be dropped which will properly destroy `T` and release the
    /// allocated memory.
    ///
    /// Note: this is an associated function, which means that you have
    /// to call it as `Box::leak(b)` instead of `b.leak()`. This
    /// is so that there is no conflict with a method on the inner type.
    ///
    /// # Examples
    ///
    /// Simple usage:
    ///
    /// ```
    /// use alloc_wg::boxed::Box;
    ///
    /// let x = Box::new(41);
    /// let static_ref: &'static mut usize = Box::leak(x);
    /// *static_ref += 1;
    /// assert_eq!(*static_ref, 42);
    /// ```
    // TODO: Example for unsized data
    #[inline]
    pub fn leak<'a>(b: Self) -> &'a mut T
    where
        T: 'a, // Technically not needed, but kept to be explicit.
    {
        unsafe { &mut *Self::into_raw(b) }
    }

    /// Converts a `Box<T, B>` into a `Pin<Box<T, B>>`
    ///
    /// This conversion does not allocate and happens in place.
    ///
    /// This is also available via [`From`][].
    pub fn into_pin(boxed: Self) -> Pin<Self> {
        // It's not possible to move or replace the insides of a `Pin<Box<T>>`
        // when `T: !Unpin`,  so it's safe to pin it directly without any
        // additional requirements.
        unsafe { Pin::new_unchecked(boxed) }
    }
}

impl<T: ?Sized, B: BuildDealloc> Deref for Box<T, B> {
    type Target = T;

    fn deref(&self) -> &T {
        unsafe { self.0.as_ref() }
    }
}
impl<T: ?Sized, B: BuildDealloc> DerefMut for Box<T, B> {
    fn deref_mut(&mut self) -> &mut T {
        unsafe { self.0.as_mut() }
    }
}

impl<T: ?Sized, B: BuildDealloc> From<Box<T, B>> for Pin<Box<T, B>> {
    /// Converts a `Box<T, B>` into a `Pin<Box<T, B>>`
    ///
    /// This conversion does not allocate on the heap and happens in place.
    fn from(boxed: Box<T, B>) -> Self {
        Box::into_pin(boxed)
    }
}

impl<T: fmt::Display + ?Sized, B: BuildDealloc> fmt::Display for Box<T, B> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Display::fmt(&**self, f)
    }
}
impl<T: fmt::Debug + ?Sized, B: BuildDealloc> fmt::Debug for Box<T, B> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Debug::fmt(&**self, f)
    }
}

impl<T: ?Sized, B: BuildDealloc> AsRef<T> for Box<T, B> {
    fn as_ref(&self) -> &T {
        &**self
    }
}
impl<T: ?Sized, B: BuildDealloc> AsMut<T> for Box<T, B> {
    fn as_mut(&mut self) -> &mut T {
        &mut **self
    }
}

#[cfg(feature = "dropck_eyepatch")]
unsafe impl<#[may_dangle] T: ?Sized, B: BuildDealloc> Drop for Box<T, B> {
    fn drop(&mut self) {
        unsafe {
            self.get_alloc().dealloc(
                self.0.cast(),
                NonZeroLayout::for_value_unchecked(self.0.as_ref()),
            )
        }
    }
}

#[cfg(not(feature = "dropck_eyepatch"))]
impl<T: ?Sized, B: BuildDealloc> Drop for Box<T, B> {
    fn drop(&mut self) {
        unsafe {
            self.get_alloc().dealloc(
                self.0.cast(),
                NonZeroLayout::for_value_unchecked(self.0.as_ref()),
            )
        }
    }
}