1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
mod ag;
mod bit_buffer;
mod dp;
mod matrix;

use ag::AgParams;
use byteorder::{BE, WriteBytesExt};
use bit_buffer::BitBuffer;

pub const DEFAULT_FRAME_SIZE: usize = 4096;
pub const DEFAULT_FRAMES_PER_PACKET: u32 = 4096;

// FIXME: Adding some bytes here because the encoder does produce packages that large when encoding random data
// 4 & 5 channels seems to overflow by one byte
// 6 channels seems to overflow by four bytes
// 7 & 8 channels seems to overflow by seven bytes
// The last, smaller, packet can also overflow by 20 bytes on top of this
// 8 + 7 + 20 = 35, make it 40 for good measurement
pub const MAX_ESCAPE_HEADER_BYTES: usize = 40;

const MAX_CHANNELS: usize = 8;
const MAX_SAMPLE_SIZE: usize = 32;
const MAX_SEARCHES: usize = 16;
const MAX_COEFS: usize = 16;

const DEFAULT_MIX_BITS: u32 = 2;
const MAX_RES: u32 = 4;
const DEFAULT_NUM_UV: u32 = 8;

const MIN_UV: usize = 4;
const MAX_UV: usize = 8;

const MAX_RUN_DEFAULT: u16 = 255;

const ALAC_COMPATIBLE_VERSION: u8 = 0;

#[allow(dead_code)]
#[derive(Clone, Copy, Debug)]
enum ElementType {
    /// Single Channel Element
    SCE = 0,
    /// Channel Pair Element
    CPE = 1,
    /// Coupling Channel Element
    CCE = 2,
    /// LFE Channel Element
    LFE = 3,
    // not yet supported
    DSE = 4,
    PCE = 5,
    FIL = 6,
    END = 7,
    /// invalid
    NIL = 255,
}

const CHANNEL_MAPS: [[ElementType; MAX_CHANNELS]; MAX_CHANNELS] = [
    [ElementType::SCE, ElementType::NIL, ElementType::NIL, ElementType::NIL, ElementType::NIL, ElementType::NIL, ElementType::NIL, ElementType::NIL],
    [ElementType::CPE, ElementType::NIL, ElementType::NIL, ElementType::NIL, ElementType::NIL, ElementType::NIL, ElementType::NIL, ElementType::NIL],
    [ElementType::SCE, ElementType::CPE, ElementType::NIL, ElementType::NIL, ElementType::NIL, ElementType::NIL, ElementType::NIL, ElementType::NIL],
    [ElementType::SCE, ElementType::CPE, ElementType::NIL, ElementType::SCE, ElementType::NIL, ElementType::NIL, ElementType::NIL, ElementType::NIL],
    [ElementType::SCE, ElementType::CPE, ElementType::NIL, ElementType::CPE, ElementType::NIL, ElementType::NIL, ElementType::NIL, ElementType::NIL],
    [ElementType::SCE, ElementType::CPE, ElementType::NIL, ElementType::CPE, ElementType::NIL, ElementType::SCE, ElementType::NIL, ElementType::NIL],
    [ElementType::SCE, ElementType::CPE, ElementType::NIL, ElementType::CPE, ElementType::NIL, ElementType::SCE, ElementType::SCE, ElementType::NIL],
    [ElementType::SCE, ElementType::CPE, ElementType::NIL, ElementType::CPE, ElementType::NIL, ElementType::CPE, ElementType::NIL, ElementType::SCE],
];

pub trait PcmFormat {
    fn bits() -> u32;
    fn bytes() -> u32;
    fn flags() -> u32;
}

impl PcmFormat for i16 {
    fn bits() -> u32 { 16 }
    fn bytes() -> u32 { 2 }
    fn flags() -> u32 { 4 }
}

#[derive(Clone, Copy, Debug, PartialEq, Eq)]
enum FormatType {
    /// Apple Lossless
    AppleLossless,
    /// Linear PCM
    LinearPcm,
}

pub struct FormatDescription {
    sample_rate: f64,
    format_id: FormatType,
    format_flags: u32,
    bytes_per_packet: u32,
    frames_per_packet: u32,
    channels_per_frame: u32,
    bits_per_channel: u32,
}

impl FormatDescription {
    pub fn pcm<T: PcmFormat>(sample_rate: f64, channels: u32) -> FormatDescription {
        FormatDescription {
            sample_rate,
            format_id: FormatType::LinearPcm,
            format_flags: T::flags(),
            bytes_per_packet: channels * T::bytes(),
            frames_per_packet: 1,
            channels_per_frame: channels,
            bits_per_channel: T::bits(),
        }
    }

    pub fn alac(sample_rate: f64, frames_per_packet: u32, channels: u32) -> FormatDescription {
        FormatDescription {
            sample_rate,
            format_id: FormatType::AppleLossless,
            format_flags: 1,
            bytes_per_packet: 0,
            frames_per_packet,
            channels_per_frame: channels,
            bits_per_channel: 0,
        }
    }
}

pub struct AlacEncoder {
    // ALAC encoder parameters
    bit_depth: i16,
    // FIXME: Why is this also needed? and why is it zero? What happens if it's e.g. 16?
    bits_per_channel: usize,

    // encoding state
    last_mix_res: [i16; 8],

    // encoding buffers
    mix_buffer_u: Vec<i32>,
    mix_buffer_v: Vec<i32>,
    predictor_u: Vec<i32>,
    predictor_v: Vec<i32>,
    shift_buffer_uv: Vec<u16>,
    work_buffer: Vec<u8>,

    // per-channel coefficients buffers
    coefs_u: [[[i16; MAX_COEFS]; MAX_SEARCHES]; MAX_CHANNELS],
    coefs_v: [[[i16; MAX_COEFS]; MAX_SEARCHES]; MAX_CHANNELS],

    // encoding statistics
    total_bytes_generated: usize,
    avg_bit_rate: u32,
    max_frame_bytes: u32,
    frame_size: usize,
    max_output_bytes: usize,
    num_channels: u32,
    output_sample_rate: u32,
}

impl AlacEncoder {
    pub fn new(output_format: &FormatDescription) -> AlacEncoder {
        assert_eq!(output_format.format_id, FormatType::AppleLossless);

        let bit_depth = match output_format.format_flags {
            1 => 16,
            2 => 20,
            3 => 24,
            4 => 32,
            _ => panic!("Invalid format_flags: {}", output_format.format_flags),
        };

        let frame_size = output_format.frames_per_packet as usize;
        let num_channels = output_format.channels_per_frame;
        let max_output_bytes = frame_size * (num_channels as usize) * ((10 + MAX_SAMPLE_SIZE) / 8) + 1;

        let mut coefs_u = [[[0i16; MAX_COEFS]; MAX_SEARCHES]; MAX_CHANNELS];
        let mut coefs_v = [[[0i16; MAX_COEFS]; MAX_SEARCHES]; MAX_CHANNELS];

        // allocate mix buffers
        let mix_buffer_u = vec![0i32; frame_size];
        let mix_buffer_v = vec![0i32; frame_size];

        // allocate dynamic predictor buffers
        let predictor_u = vec![0i32; frame_size];
        let predictor_v = vec![0i32; frame_size];

        // allocate combined shift buffer
        let shift_buffer_uv = vec![0u16; frame_size * 2];

        // allocate work buffer for search loop
        let work_buffer = vec![0u8; max_output_bytes];

        // initialize coefs arrays once b/c retaining state across blocks actually improves the encode ratio
        for channel in 0..(num_channels as usize) {
            for search in 0..MAX_SEARCHES {
                dp::init_coefs(&mut coefs_u[channel][search], dp::DENSHIFT_DEFAULT);
                dp::init_coefs(&mut coefs_v[channel][search], dp::DENSHIFT_DEFAULT);
            }
        }

        AlacEncoder {
            // ALAC encoder parameters
            bit_depth: bit_depth,
            bits_per_channel: output_format.bits_per_channel as usize,

            // encoding state
            last_mix_res: [0; 8],

            // encoding buffers
            mix_buffer_u: mix_buffer_u,
            mix_buffer_v: mix_buffer_v,
            predictor_u: predictor_u,
            predictor_v: predictor_v,
            shift_buffer_uv: shift_buffer_uv,
            work_buffer: work_buffer,

            // per-channel coefficients buffers
            coefs_u: coefs_u,
            coefs_v: coefs_v,

            // encoding statistics
            total_bytes_generated: 0,
            avg_bit_rate: 0,
            max_frame_bytes: 0,
            frame_size: frame_size,
            max_output_bytes: max_output_bytes,
            num_channels: num_channels,
            output_sample_rate: output_format.sample_rate as u32,
        }
    }

    pub fn bit_depth(&self) -> usize {
        self.bit_depth as usize
    }

    pub fn channels(&self) -> usize {
        self.num_channels as usize
    }

    pub fn frames(&self) -> usize {
        self.frame_size
    }

    pub fn sample_rate(&self) -> usize {
        self.output_sample_rate as usize
    }

    pub fn magic_cookie(&self) -> Vec<u8> {
        let mut result = Vec::with_capacity(if self.num_channels > 2 { 48 } else { 24 });

        /* ALACSpecificConfig */
        result.write_u32::<BE>(self.frame_size as u32).unwrap();
        result.write_u8(ALAC_COMPATIBLE_VERSION).unwrap();
        result.write_u8(self.bit_depth as u8).unwrap();
        result.write_u8(ag::PB0 as u8).unwrap();
        result.write_u8(ag::MB0 as u8).unwrap();
        result.write_u8(ag::KB0 as u8).unwrap();
        result.write_u8(self.num_channels as u8).unwrap();
        result.write_u16::<BE>(MAX_RUN_DEFAULT).unwrap();
        result.write_u32::<BE>(self.max_frame_bytes).unwrap();
        result.write_u32::<BE>(self.avg_bit_rate).unwrap();
        result.write_u32::<BE>(self.output_sample_rate).unwrap();

        /* ALACAudioChannelLayout */
        if self.num_channels > 2 {
            let channel_layout_tag = match self.num_channels {
                1 => [1, 0, 100, 0],
                2 => [2, 0, 101, 0],
                3 => [3, 0, 113, 0],
                4 => [4, 0, 116, 0],
                5 => [5, 0, 120, 0],
                6 => [6, 0, 124, 0],
                7 => [7, 0, 142, 0],
                8 => [8, 0, 127, 0],
                _ => panic!("Unsuported number of channels"),
            };

            result.write_u32::<BE>(24).unwrap();
            result.extend(&['c' as u8, 'h' as u8, 'a' as u8, 'n' as u8]);
            result.write_u32::<BE>(0).unwrap();
            result.extend(&channel_layout_tag);
            result.write_u32::<BE>(0).unwrap();
            result.write_u32::<BE>(0).unwrap();
        }

        result
    }

    pub fn encode(&mut self, input_format: &FormatDescription, input_data: &[u8], output_data: &mut [u8]) -> usize {
        assert_eq!(input_format.format_id, FormatType::LinearPcm);

        let num_frames = input_data.len() / (input_format.bytes_per_packet as usize);
        assert!(num_frames <= self.frame_size);

        let minimum_buffer_size = (num_frames * (self.num_channels as usize) * (((10 + self.bits_per_channel) / 8) + 1)) + MAX_ESCAPE_HEADER_BYTES;
        assert!(output_data.len() >= minimum_buffer_size);

        // create a bit buffer structure pointing to our output buffer
        // FIXME: max_output_bytes is calculated from maximum sample size, and thus is usually larger than output_data length. Validate that this assumption holds...
        let mut bitstream = BitBuffer::new(&mut output_data[0..minimum_buffer_size]);

        match input_format.channels_per_frame {
            1 => {
                // add 3-bit frame start tag ID_SCE = mono channel & 4-bit element instance tag = 0
                bitstream.write_lte25(ElementType::SCE as u32, 3);
                bitstream.write_lte25(0, 4);

                // encode mono input buffer
                self.encode_mono(&mut bitstream, input_data, 1, 0, num_frames);
            },
            2 => {
                // add 3-bit frame start tag ID_CPE = channel pair & 4-bit element instance tag = 0
                bitstream.write_lte25(ElementType::CPE as u32, 3);
                bitstream.write_lte25(0, 4);

                // encode stereo input buffer
                self.encode_stereo(&mut bitstream, input_data, 2, 0, num_frames);
            },
            3...8 => {
                let input_increment = ((self.bit_depth + 7) / 8) as usize;
                let mut input_position = 0usize;

                let mut channel_index = 0;
                let mut mono_element_tag = 0;
                let mut stereo_element_tag = 0;
                let mut lfe_element_tag = 0;

                while channel_index < input_format.channels_per_frame {
                    let tag = CHANNEL_MAPS[input_format.channels_per_frame as usize - 1][channel_index as usize];

                    bitstream.write_lte25(tag as u32, 3);

                    match tag {
                        ElementType::SCE => {
                            // mono
                            bitstream.write_lte25(mono_element_tag, 4);
                            let input_size = input_increment * 1;
                            self.encode_mono(&mut bitstream, &input_data[input_position..], input_format.channels_per_frame as usize, channel_index as usize, num_frames);
                            input_position += input_size;
                            channel_index += 1;
                            mono_element_tag += 1;
                        },
                        ElementType::CPE => {
                            // stereo
                            bitstream.write_lte25(stereo_element_tag, 4);
                            let input_size = input_increment * 2;
                            self.encode_stereo(&mut bitstream, &input_data[input_position..], input_format.channels_per_frame as usize, channel_index as usize, num_frames);
                            input_position += input_size;
                            channel_index += 2;
                            stereo_element_tag += 1;
                        },
                        ElementType::LFE => {
                            // LFE channel (subwoofer)
                            bitstream.write_lte25(lfe_element_tag, 4);
                            let input_size = input_increment * 1;
                            self.encode_mono(&mut bitstream, &input_data[input_position..], input_format.channels_per_frame as usize, channel_index as usize, num_frames);
                            input_position += input_size;
                            channel_index += 1;
                            lfe_element_tag += 1;
                        },
                        _ => panic!("Unexpected ElementTag {:?}", tag),
                    }
                }
            },
            _ => {
                panic!("Unsuported number of channels");
            },
        }

        // add 3-bit frame end tag: ID_END
        bitstream.write_lte25(ElementType::END as u32, 3);

        // byte-align the output data
        bitstream.byte_align(true);

        let output_size = bitstream.position() / 8;
        assert!(output_size <= bitstream.len());
        assert!(output_size <= self.max_output_bytes);

        self.total_bytes_generated += output_size;
        self.max_frame_bytes = std::cmp::max(self.max_frame_bytes, output_size as u32);

        output_size
    }

    fn encode_mono(&mut self, bitstream: &mut BitBuffer, input: &[u8], stride: usize, channel_index: usize, num_samples: usize) {
        let start_position = bitstream.position();

        // reload coefs array from previous frame
        let coefs_u = &mut self.coefs_u[channel_index];

        // pick bit depth for actual encoding
        // - we lop off the lower byte(s) for 24-/32-bit encodings
        let bytes_shifted: u8 = match self.bit_depth { 32 => 2, 24 => 1, _ => 0 };

        let shift: u32 = (bytes_shifted as u32) * 8;
        let mask: u32 = (1u32 << shift) - 1;
        let chan_bits: u32 = (self.bit_depth as u32) - shift;

        // flag whether or not this is a partial frame
        let partial_frame: u8 = if num_samples == (self.frame_size) { 0 } else { 1 };

        match self.bit_depth {
            16 => {
                // convert 16-bit data to 32-bit for predictor
                let input16 = unsafe { std::slice::from_raw_parts(input.as_ptr() as *const i16, num_samples * stride) };
                for index in 0..num_samples {
                    self.mix_buffer_u[index] = input16[index * stride] as i32;
                }
            },
            20 => {
                // convert 20-bit data to 32-bit for predictor
                matrix::copy20_to_predictor(input, stride, &mut self.mix_buffer_u, num_samples);
            },
            24 =>  {
                // convert 24-bit data to 32-bit for the predictor and extract the shifted off byte(s)
                matrix::copy24_to_predictor(input, stride, &mut self.mix_buffer_u, num_samples);
                for index in 0..num_samples {
                    self.shift_buffer_uv[index] = ((self.mix_buffer_u[index] as u32) & mask) as u16;
                    self.mix_buffer_u[index] >>= shift;
                }
            },
            32 => {
                // just copy the 32-bit input data for the predictor and extract the shifted off byte(s)
                let input32 = unsafe { std::slice::from_raw_parts(input.as_ptr() as *const i32, num_samples * stride) };

                for index in 0..num_samples {
                    let val = input32[index * stride];

                    self.shift_buffer_uv[index] = ((val as u32) & mask) as u16;
                    self.mix_buffer_u[index] = val >> shift;
                }
            },
            _ => panic!("Invalid mBitDepth"),
        }

        // brute-force encode optimization loop (implied "encode depth" of 0 if comparing to cmd line tool)
        // - run over variations of the encoding params to find the best choice
        let min_u = 4;
        let max_u = 8;
        let pb_factor = 4;

        let mut min_bits = 1 << 31;
        let mut best_u = min_u;

        for num_u in (min_u..max_u).step_by(4) {
            let dilate = 32usize;
            for _ in 0..7 {
                dp::pc_block(&self.mix_buffer_u, &mut self.predictor_u, num_samples / dilate, &mut coefs_u[num_u - 1], num_u, chan_bits as usize, dp::DENSHIFT_DEFAULT);
            }

            let dilate = 8usize;
            dp::pc_block(&self.mix_buffer_u, &mut self.predictor_u, num_samples / dilate, &mut coefs_u[num_u - 1], num_u, chan_bits as usize, dp::DENSHIFT_DEFAULT);

            let mut work_bits = BitBuffer::new(&mut self.work_buffer);
            let ag_params = AgParams::new(ag::MB0, (pb_factor * (ag::PB0)) / 4, ag::KB0, (num_samples / dilate) as u32, (num_samples / dilate) as u32);
            ag::dyn_comp(&ag_params, &self.predictor_u, &mut work_bits, num_samples / dilate, chan_bits as usize);

            let num_bits = (dilate * work_bits.position()) + (16 * num_u);
            if num_bits < min_bits {
                best_u = num_u;
                min_bits = num_bits;
            }
        }

        // test for escape hatch if best calculated compressed size turns out to be more than the input size
        // - first, add bits for the header bytes mixRes/maxRes/shiftU/filterU
        min_bits += (4 /* mixRes/maxRes/etc. */ * 8) + (if partial_frame == (true as u8) { 32 } else { 0 });
        if bytes_shifted != 0 {
            min_bits += num_samples * ((bytes_shifted as usize) * 8);
        }

        let escape_bits = (num_samples * (self.bit_depth as usize)) + (if partial_frame == (true as u8) { 32 } else { 0 }) + (2 * 8); /* 2 common header bytes */

        let mut do_escape = min_bits >= escape_bits;

        if do_escape == false {
            // write bitstream header
            bitstream.write_lte25(0, 12);
            bitstream.write_lte25(((partial_frame as u32) << 3) | ((bytes_shifted as u32) << 1), 4);
            if partial_frame > 0 {
                bitstream.write(num_samples as u32, 32);
            }
            bitstream.write_lte25(0, 16); // mixBits = mixRes = 0

            // write the params and predictor coefs
            bitstream.write_lte25((0 << 4) | dp::DENSHIFT_DEFAULT, 8); // modeU = 0
            bitstream.write_lte25(((pb_factor as u32) << 5) | (best_u as u32), 8);
            for index in 0..best_u {
                bitstream.write_lte25(coefs_u[(best_u as usize) - 1][index] as u32, 16);
            }

            // if shift active, write the interleaved shift buffers
            if bytes_shifted != 0 {
                for index in 0..num_samples {
                    bitstream.write(self.shift_buffer_uv[index] as u32, shift);
                }
            }

            // run the dynamic predictor with the best result
            dp::pc_block(&self.mix_buffer_u, &mut self.predictor_u, num_samples, &mut coefs_u[best_u - 1], best_u, chan_bits as usize, dp::DENSHIFT_DEFAULT);

            // do lossless compression
            let ag_params = AgParams::new_standard(num_samples as u32, num_samples as u32);
            ag::dyn_comp(&ag_params, &self.predictor_u, bitstream, num_samples, chan_bits as usize);

            // if we happened to create a compressed packet that was actually bigger than an escape packet would be,
            // chuck it and do an escape packet
            let min_bits = bitstream.position() - start_position;
            if min_bits >= escape_bits {
                bitstream.set_position(start_position);
                do_escape = true;
                println!("compressed frame too big: {} vs. {}", min_bits, escape_bits);
            }
        }

        if do_escape == true {
            // write bitstream header and coefs
            bitstream.write_lte25(0, 12);
            bitstream.write_lte25(((partial_frame as u32) << 3) | 1, 4); // LSB = 1 means "frame not compressed"
            if partial_frame > 0 {
                bitstream.write(num_samples as u32, 32);
            }

            // just copy the input data to the output buffer
            match self.bit_depth {
                16 => {
                    let input16 = unsafe { std::slice::from_raw_parts(input.as_ptr() as *const i16 as *mut i16, num_samples * stride) };
                    for index in (0..(num_samples * stride)).step_by(stride) {
                        bitstream.write_lte25(input16[index] as u32, 16);
                    }
                },
                20 => {
                    // convert 20-bit data to 32-bit for simplicity
                    matrix::copy20_to_predictor(input, stride, &mut self.mix_buffer_u, num_samples);
                    for index in 0..num_samples {
                        bitstream.write_lte25(self.mix_buffer_u[index] as u32, 20);
                    }
                },
                24 => {
                    // convert 24-bit data to 32-bit for simplicity
                    matrix::copy24_to_predictor(input, stride, &mut self.mix_buffer_u, num_samples);
                    for index in 0..num_samples {
                        bitstream.write_lte25(self.mix_buffer_u[index] as u32, 24);
                    }
                },
                32 => {
                    let input32 = unsafe { std::slice::from_raw_parts(input.as_ptr() as *const i32, num_samples * stride) };
                    for index in (0..(num_samples * stride)).step_by(stride) {
                        bitstream.write(input32[index] as u32, 32);
                    }
                },
                _ => panic!("Invalid mBitDepth"),
            }
        }
    }

    fn encode_stereo_escape(&mut self, bitstream: &mut BitBuffer, input: &[u8], stride: usize, num_samples: usize) {
        // flag whether or not this is a partial frame
        let partial_frame: u8 = if num_samples == (self.frame_size) { 0 } else { 1 };

        // write bitstream header
        bitstream.write_lte25(0, 12);
        bitstream.write_lte25(((partial_frame as u32) << 3) | 1, 4); // LSB = 1 means "frame not compressed"
        if partial_frame > 0 {
            bitstream.write(num_samples as u32, 32);
        }

        // just copy the input data to the output buffer
        match self.bit_depth {
            16 => {
                let input16 = unsafe { std::slice::from_raw_parts(input.as_ptr() as *const i16, num_samples * stride) };

                for index in (0..(num_samples * stride)).step_by(stride) {
                    bitstream.write_lte25(input16[index + 0] as u32, 16);
                    bitstream.write_lte25(input16[index + 1] as u32, 16);
                }
            },
            20 => {
                // mix20() with mixres param = 0 means de-interleave so use it to simplify things
                matrix::mix20(input, stride, &mut self.mix_buffer_u, &mut self.mix_buffer_v, num_samples, 0, 0);
                for index in 0..num_samples {
                    bitstream.write_lte25(self.mix_buffer_u[index] as u32, 20);
                    bitstream.write_lte25(self.mix_buffer_v[index] as u32, 20);
                }
            },
            24 => {
                // mix24() with mixres param = 0 means de-interleave so use it to simplify things
                matrix::mix24(input, stride, &mut self.mix_buffer_u, &mut self.mix_buffer_v, num_samples, 0, 0, &mut self.shift_buffer_uv, 0);
                for index in 0..num_samples {
                    bitstream.write_lte25(self.mix_buffer_u[index] as u32, 24);
                    bitstream.write_lte25(self.mix_buffer_v[index] as u32, 24);
                }
            },
            32 => {
                let input32 = unsafe { std::slice::from_raw_parts(input.as_ptr() as *const i32, num_samples * stride) };

                for index in (0..(num_samples * stride)).step_by(stride) {
                    bitstream.write(input32[index + 0] as u32, 32);
                    bitstream.write(input32[index + 1] as u32, 32);
                }
            },
            _ => panic!("Invalid mBitDepth"),
        }
    }

    fn encode_stereo(&mut self, bitstream: &mut BitBuffer, input: &[u8], stride: usize, channel_index: usize, num_samples: usize) {
        let start_position = bitstream.position();

        // reload coefs pointers for this channel pair
        // - note that, while you might think they should be re-initialized per block, retaining state across blocks
        //   actually results in better overall compression
        // - strangely, re-using the same coefs for the different passes of the "mixRes" search loop instead of using
        //   different coefs for the different passes of "mixRes" results in even better compression
        let coefs_u = &mut self.coefs_u[channel_index];
        let coefs_v = &mut self.coefs_v[channel_index];

        // matrix encoding adds an extra bit but 32-bit inputs cannot be matrixed b/c 33 is too many
        // so enable 16-bit "shift off" and encode in 17-bit mode
        // - in addition, 24-bit mode really improves with one byte shifted off
        let bytes_shifted: u8 = match self.bit_depth { 32 => 2, 24 => 1, _ => 0 };

        let chan_bits: u32 = (self.bit_depth as u32) - (bytes_shifted as u32 * 8) + 1;

        // flag whether or not this is a partial frame
        let partial_frame: u8 = if num_samples == (self.frame_size) { 0 } else { 1 };

        // brute-force encode optimization loop
        // - run over variations of the encoding params to find the best choice
        let mix_bits: i32 = DEFAULT_MIX_BITS as i32;
        let max_res: i32 = MAX_RES as i32;
        let num_u: u32 = DEFAULT_NUM_UV;
        let num_v: u32 = DEFAULT_NUM_UV;
        let mode: u32 = 0;
        let pb_factor: u32 = 4;

        let mut min_bits = 1 << 31;
        let mut best_res: i32 = self.last_mix_res[channel_index] as i32;

        for mix_res in 0..=max_res {
            let dilate = 8usize;

            // mix the stereo inputs
            match self.bit_depth {
                16 => {
                    matrix::mix16(input, stride, &mut self.mix_buffer_u, &mut self.mix_buffer_v, num_samples / dilate, mix_bits, mix_res);
                },
                20 => {
                    matrix::mix20(input, stride, &mut self.mix_buffer_u, &mut self.mix_buffer_v, num_samples / dilate, mix_bits, mix_res);
                },
                24 => {
                    // includes extraction of shifted-off bytes
                    matrix::mix24(input, stride, &mut self.mix_buffer_u, &mut self.mix_buffer_v, num_samples / dilate, mix_bits, mix_res, &mut self.shift_buffer_uv, bytes_shifted as i32);
                },
                32 => {
                    // includes extraction of shifted-off bytes
                    matrix::mix32(input, stride, &mut self.mix_buffer_u, &mut self.mix_buffer_v, num_samples / dilate, mix_bits, mix_res, &mut self.shift_buffer_uv, bytes_shifted as i32);
                },
                _ => panic!("Invalid mBitDepth"),
            }

            // run the dynamic predictors
            dp::pc_block(&self.mix_buffer_u, &mut self.predictor_u, num_samples / dilate, &mut coefs_u[(num_u as usize) - 1], num_u as usize, chan_bits as usize, dp::DENSHIFT_DEFAULT);
            dp::pc_block(&self.mix_buffer_v, &mut self.predictor_v, num_samples / dilate, &mut coefs_v[(num_v as usize) - 1], num_v as usize, chan_bits as usize, dp::DENSHIFT_DEFAULT);

            // run the lossless compressor on each channel
            let mut work_bits = BitBuffer::new(&mut self.work_buffer);
            let ag_params = AgParams::new(ag::MB0, (pb_factor * (ag::PB0)) / 4, ag::KB0, (num_samples / dilate) as u32, (num_samples / dilate) as u32);
            ag::dyn_comp(&ag_params, &self.predictor_u, &mut work_bits, num_samples / dilate, chan_bits as usize);
            ag::dyn_comp(&ag_params, &self.predictor_v, &mut work_bits, num_samples / dilate, chan_bits as usize);

            // look for best match
            if work_bits.position() < min_bits {
                min_bits = work_bits.position();
                best_res = mix_res;
            }
        }

        self.last_mix_res[channel_index] = best_res as i16;

        // mix the stereo inputs with the current best mixRes
        let mix_res: i32 = self.last_mix_res[channel_index] as i32;
        match self.bit_depth {
            16 => {
                matrix::mix16(input, stride, &mut self.mix_buffer_u, &mut self.mix_buffer_v, num_samples, mix_bits, mix_res);
            },
            20 => {
                matrix::mix20(input, stride, &mut self.mix_buffer_u, &mut self.mix_buffer_v, num_samples, mix_bits, mix_res);
            },
            24 => {
                // also extracts the shifted off bytes into the shift buffers
                matrix::mix24(input, stride, &mut self.mix_buffer_u, &mut self.mix_buffer_v, num_samples, mix_bits, mix_res, &mut self.shift_buffer_uv, bytes_shifted as i32);
            },
            32 => {
                // also extracts the shifted off bytes into the shift buffers
                matrix::mix32(input, stride, &mut self.mix_buffer_u, &mut self.mix_buffer_v, num_samples, mix_bits, mix_res, &mut self.shift_buffer_uv, bytes_shifted as i32);
            },
            _ => panic!("Invalid mBitDepth"),
        }

        // now it's time for the predictor coefficient search loop
        let mut num_u: usize = MIN_UV;
        let mut num_v: usize = MIN_UV;
        let mut min_bits1: usize = 1 << 31;
        let mut min_bits2: usize = 1 << 31;

        for num_uv in (MIN_UV..=MAX_UV).step_by(4) {
            let dilate = 32usize;

            for _ in 0..8 {
                dp::pc_block(&self.mix_buffer_u, &mut self.predictor_u, num_samples / dilate, &mut coefs_u[(num_uv as usize) - 1], num_uv as usize, chan_bits as usize, dp::DENSHIFT_DEFAULT);
                dp::pc_block(&self.mix_buffer_v, &mut self.predictor_v, num_samples / dilate, &mut coefs_v[(num_uv as usize) - 1], num_uv as usize, chan_bits as usize, dp::DENSHIFT_DEFAULT);
            }

            let dilate = 8usize;
            let ag_params = AgParams::new(ag::MB0, (pb_factor * ag::PB0) / 4, ag::KB0, (num_samples / dilate) as u32, (num_samples / dilate) as u32);

            let mut work_bits = BitBuffer::new(&mut self.work_buffer);
            ag::dyn_comp(&ag_params, &self.predictor_u, &mut work_bits, num_samples / dilate, chan_bits as usize);
            let bits1 = work_bits.position();

            if (bits1 * dilate + 16 * num_uv) < min_bits1 {
                min_bits1 = bits1 * dilate + 16 * num_uv;
                num_u = num_uv;
            }

            let mut work_bits = BitBuffer::new(&mut self.work_buffer);
            ag::dyn_comp(&ag_params, &self.predictor_v, &mut work_bits, num_samples / dilate, chan_bits as usize);
            let bits2 = work_bits.position();

            if (bits2 * dilate + 16 * num_uv) < min_bits2 {
                min_bits2 = bits2 * dilate + 16 * num_uv;
                num_v = num_uv;
            }
        }

        // test for escape hatch if best calculated compressed size turns out to be more than the input size
        let mut min_bits = min_bits1 + min_bits2 + (8 /* mixRes/maxRes/etc. */ * 8) + (if partial_frame == (true as u8) { 32 } else { 0 });
        if bytes_shifted != 0 {
            min_bits += (num_samples) * ((bytes_shifted as usize) * 8) * 2;
        }

        let escape_bits = (num_samples * (self.bit_depth as usize) * 2) + (if partial_frame == (true as u8) { 32 } else { 0 }) + (2 * 8); /* 2 common header bytes */

        let mut do_escape = min_bits >= escape_bits;

        if do_escape == false {
            // write bitstream header and coefs
            bitstream.write_lte25(0, 12);
            bitstream.write_lte25(((partial_frame as u32) << 3) | ((bytes_shifted as u32) << 1), 4);
            if partial_frame > 0 {
                bitstream.write(num_samples as u32, 32);
            }
            bitstream.write_lte25(mix_bits as u32, 8);
            bitstream.write_lte25(mix_res as u32, 8);

            assert!((mode < 16) && (dp::DENSHIFT_DEFAULT < 16));
            assert!((pb_factor < 8) && (num_u < 32));
            assert!((pb_factor < 8) && (num_v < 32));

            bitstream.write_lte25((mode << 4) | dp::DENSHIFT_DEFAULT, 8);
            bitstream.write_lte25((pb_factor << 5) | (num_u as u32), 8);
            for index in 0..num_u {
                bitstream.write_lte25(coefs_u[(num_u as usize) - 1][index as usize] as u32, 16);
            }

            bitstream.write_lte25((mode << 4) | dp::DENSHIFT_DEFAULT, 8);
            bitstream.write_lte25((pb_factor << 5) | (num_v as u32), 8);
            for index in 0..num_v {
                bitstream.write_lte25(coefs_v[(num_v as usize) - 1][index as usize] as u32, 16);
            }

            // if shift active, write the interleaved shift buffers
            if bytes_shifted != 0 {
                let bit_shift: u32 = (bytes_shifted as u32) * 8;
                assert!(bit_shift <= 16);

                for index in (0..(num_samples * 2)).step_by(2) {
                    let shifted_val: u32 = ((self.shift_buffer_uv[index + 0] as u32) << bit_shift) | (self.shift_buffer_uv[index + 1] as u32);
                    bitstream.write(shifted_val, bit_shift * 2);
                }
            }

            // run the dynamic predictor and lossless compression for the "left" channel
            // - note: to avoid allocating more buffers, we're mixing and matching between the available buffers instead
            //   of only using "U" buffers for the U-channel and "V" buffers for the V-channel
            if mode == 0 {
                dp::pc_block(&self.mix_buffer_u, &mut self.predictor_u, num_samples, &mut coefs_u[(num_u as usize) - 1], num_u as usize, chan_bits as usize, dp::DENSHIFT_DEFAULT);
            } else {
                dp::pc_block(&self.mix_buffer_u, &mut self.predictor_v, num_samples, &mut coefs_u[(num_u as usize) - 1], num_u as usize, chan_bits as usize, dp::DENSHIFT_DEFAULT);
                dp::pc_block(&self.predictor_v, &mut self.predictor_u, num_samples, &mut [], 31, chan_bits as usize, 0);
            }

            let ag_params = AgParams::new(ag::MB0, (pb_factor * ag::PB0) / 4, ag::KB0, num_samples as u32, num_samples as u32);
            ag::dyn_comp(&ag_params, &self.predictor_u, bitstream, num_samples, chan_bits as usize);

            // run the dynamic predictor and lossless compression for the "right" channel
            if mode == 0 {
                dp::pc_block(&self.mix_buffer_v, &mut self.predictor_v, num_samples, &mut coefs_v[(num_v as usize) - 1], num_v as usize, chan_bits as usize, dp::DENSHIFT_DEFAULT);
            } else {
                dp::pc_block(&self.mix_buffer_v, &mut self.predictor_u, num_samples, &mut coefs_v[(num_v as usize) - 1], num_v as usize, chan_bits as usize, dp::DENSHIFT_DEFAULT);
                dp::pc_block(&self.predictor_u, &mut self.predictor_v, num_samples, &mut [], 31, chan_bits as usize, 0);
            }

            let ag_params = AgParams::new(ag::MB0, (pb_factor * ag::PB0) / 4, ag::KB0, num_samples as u32, num_samples as u32);
            ag::dyn_comp(&ag_params, &self.predictor_v, bitstream, num_samples, chan_bits as usize);

            // if we happened to create a compressed packet that was actually bigger than an escape packet would be,
            // chuck it and do an escape packet
            let min_bits = bitstream.position() - start_position;
            if min_bits >= escape_bits {
                bitstream.set_position(start_position);
                do_escape = true;
                println!("compressed frame too big: {} vs. {}", min_bits, escape_bits);
            }
        }

        if do_escape == true {
            self.encode_stereo_escape(bitstream, input, stride, num_samples);
        }
    }
}

#[cfg(test)]
mod tests {
    use super::{AlacEncoder, FormatDescription, MAX_ESCAPE_HEADER_BYTES};

    use std::fs;

    use bincode::{deserialize};
    use serde::{Serialize, Deserialize};

    #[derive(Serialize, Deserialize, Eq, PartialEq, Debug)]
    struct EncodingResult {
        magic_cookie: Vec<u8>,
        alac_chunks: Vec<Vec<u8>>,
    }

    fn test_case (input: &str, expected: &str, frame_size: u32, channels: u32) {
        let input_format = FormatDescription::pcm::<i16>(44100.0, channels);
        let output_format = FormatDescription::alac(44100.0, frame_size, channels);

        let mut encoder = AlacEncoder::new(&output_format);

        let pcm = fs::read(format!("fixtures/{}", input)).unwrap();

        let mut output = vec![0u8; (frame_size as usize * channels as usize * 2) + MAX_ESCAPE_HEADER_BYTES];

        let mut result = EncodingResult {
            magic_cookie: encoder.magic_cookie(),
            alac_chunks: Vec::new(),
        };

        for chunk in pcm.chunks(frame_size as usize * channels as usize * 2) {
            let size = encoder.encode(&input_format, &chunk, &mut output);
            result.alac_chunks.push(Vec::from(&output[0..size]));
        }

        // NOTE: Uncomment to write out actual result
        // fs::write(format!("actual_{}", expected), bincode::serialize(&result).unwrap()).unwrap();

        let expected: EncodingResult = deserialize(&fs::read(format!("fixtures/{}", expected)).unwrap()).unwrap();

        assert_eq!(result, expected);
    }

    #[test]
    fn it_encodes_sample_352_2() {
        test_case("sample.pcm", "sample_352_2.bin", 352, 2);
    }

    #[test]
    fn it_encodes_sample_4096_2() {
        test_case("sample.pcm", "sample_4096_2.bin", 4096, 2);
    }

    #[test]
    fn it_encodes_random_352_2() {
        test_case("random.pcm", "random_352_2.bin", 352, 2);
    }

    #[test]
    fn it_encodes_random_352_3() {
        test_case("random.pcm", "random_352_3.bin", 352, 3);
    }

    #[test]
    fn it_encodes_random_352_4() {
        test_case("random.pcm", "random_352_4.bin", 352, 4);
    }

    #[test]
    fn it_encodes_random_352_5() {
        test_case("random.pcm", "random_352_5.bin", 352, 5);
    }

    #[test]
    fn it_encodes_random_352_6() {
        test_case("random.pcm", "random_352_6.bin", 352, 6);
    }

    #[test]
    fn it_encodes_random_352_7() {
        test_case("random.pcm", "random_352_7.bin", 352, 7);
    }

    #[test]
    fn it_encodes_random_352_8() {
        test_case("random.pcm", "random_352_8.bin", 352, 8);
    }

    #[test]
    fn it_encodes_random_4096_2() {
        test_case("random.pcm", "random_4096_2.bin", 4096, 2);
    }

    #[test]
    fn it_encodes_random_4096_3() {
        test_case("random.pcm", "random_4096_3.bin", 4096, 3);
    }

    #[test]
    fn it_encodes_random_4096_4() {
        test_case("random.pcm", "random_4096_4.bin", 4096, 4);
    }

    #[test]
    fn it_encodes_random_4096_5() {
        test_case("random.pcm", "random_4096_5.bin", 4096, 5);
    }

    #[test]
    fn it_encodes_random_4096_6() {
        test_case("random.pcm", "random_4096_6.bin", 4096, 6);
    }

    #[test]
    fn it_encodes_random_4096_7() {
        test_case("random.pcm", "random_4096_7.bin", 4096, 7);
    }

    #[test]
    fn it_encodes_random_4096_8() {
        test_case("random.pcm", "random_4096_8.bin", 4096, 8);
    }
}