1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
// Copyright (c) Meta Platforms, Inc. and affiliates.
//
// This source code is dual-licensed under either the MIT license found in the
// LICENSE-MIT file in the root directory of this source tree or the Apache
// License, Version 2.0 found in the LICENSE-APACHE file in the root directory
// of this source tree. You may select, at your option, one of the above-listed licenses.

//! This module contains the specifics for NodeLabel only, other types don't have the
//! same level of detail and aren't broken into sub-modules

use crate::{configuration::Configuration, PrefixOrdering, SizeOf};

#[cfg(feature = "serde_serialization")]
use crate::utils::serde_helpers::{bytes_deserialize_hex, bytes_serialize_hex};
#[cfg(feature = "nostd")]
use alloc::format;
#[cfg(feature = "nostd")]
use alloc::string::String;
#[cfg(feature = "nostd")]
use alloc::vec::Vec;

#[cfg(test)]
mod tests;

/// Represents the label of a AKD node
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
#[cfg_attr(
    feature = "serde_serialization",
    derive(serde::Serialize, serde::Deserialize)
)]
pub struct NodeLabel {
    #[cfg_attr(
        feature = "serde_serialization",
        serde(serialize_with = "bytes_serialize_hex")
    )]
    #[cfg_attr(
        feature = "serde_serialization",
        serde(deserialize_with = "bytes_deserialize_hex")
    )]
    /// Stores a binary string as a 32-byte array of `u8`s
    pub label_val: [u8; 32],
    /// len keeps track of how long the binary string is in bits
    pub label_len: u32,
}

impl SizeOf for NodeLabel {
    fn size_of(&self) -> usize {
        self.label_val.len() + core::mem::size_of::<u32>()
    }
}

impl PartialOrd for NodeLabel {
    fn partial_cmp(&self, other: &Self) -> Option<core::cmp::Ordering> {
        Some(self.cmp(other))
    }
}

impl Ord for NodeLabel {
    fn cmp(&self, other: &Self) -> core::cmp::Ordering {
        // `label_len`, `label_val`
        let len_cmp = self.label_len.cmp(&other.label_len);
        if let core::cmp::Ordering::Equal = len_cmp {
            self.label_val.cmp(&other.label_val)
        } else {
            len_cmp
        }
    }
}

impl core::fmt::Display for NodeLabel {
    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
        write!(f, "(0x{}, {})", hex::encode(self.label_val), self.label_len)
    }
}

#[derive(Debug, PartialEq, Eq)]
#[repr(u8)]
pub(crate) enum Bit {
    Zero = 0u8,
    One = 1u8,
}

impl NodeLabel {
    /// Returns the value of the [NodeLabel]
    pub fn value<TC: Configuration>(&self) -> Vec<u8> {
        TC::compute_node_label_value(&self.to_bytes())
    }

    pub(crate) fn to_bytes(self) -> Vec<u8> {
        [&self.label_len.to_be_bytes(), &self.label_val[..]].concat()
    }

    /// Outputs whether or not self is a prefix of the other [NodeLabel]
    pub fn is_prefix_of(&self, other: &Self) -> bool {
        if self.label_len > other.label_len {
            return false;
        }
        (0..self.label_len).all(|i| self.get_bit_at(i) == other.get_bit_at(i))
    }

    /// Takes as input a pointer to the caller and another [NodeLabel],
    /// returns a [NodeLabel] that is the longest common prefix of the two.
    pub fn get_longest_common_prefix<TC: Configuration>(&self, other: NodeLabel) -> Self {
        let empty_label = TC::empty_label();
        if *self == empty_label || other == empty_label {
            return empty_label;
        }

        let shorter_len = if self.label_len < other.label_len {
            self.label_len
        } else {
            other.label_len
        };

        let mut prefix_len = 0;
        while prefix_len < shorter_len
            && self.get_bit_at(prefix_len) == other.get_bit_at(prefix_len)
        {
            prefix_len += 1;
        }

        self.get_prefix(prefix_len)
    }

    /// Returns the bit at a specified index (either a 0 or a 1). Will
    /// throw an error if the index is out of range
    /// (exceeds or is equal to the length of the label in bits)
    ///
    /// Note that this is calculated from the right, for example:
    /// let mut label = [0u8; 32];
    /// label[0] = 0b10100000u8;
    /// We should get outputs as follows:
    /// * label.get_bit_at(0) = 1
    /// * label.get_bit_at(1) = 0
    /// * label.get_bit_at(2) = 1
    /// * label.get_bit_at(3) = 0
    /// * label.get_bit_at(4) = 0
    /// * label.get_bit_at(5) = 0
    /// * label.get_bit_at(6) = 0
    /// * label.get_bit_at(7) = 0
    fn get_bit_at(&self, index: u32) -> Result<Bit, String> {
        if index >= self.label_len {
            return Err(format!(
                "Index out of range: index = {index}, label_len = {label_len}",
                index = index,
                label_len = self.label_len
            ));
        }
        get_bit_from_slice(&self.label_val, index)
    }

    /// Returns the prefix of a specified length, and the entire value if the length is >= 256
    pub fn get_prefix(&self, len: u32) -> Self {
        if len >= 256 {
            return *self;
        }
        if len == 0 {
            return Self {
                label_val: [0u8; 32],
                label_len: 0,
            };
        }

        let usize_len: usize = (len - 1) as usize;
        let len_remainder = usize_len % 8;
        let len_div = usize_len / 8;

        let mut out_val = [0u8; 32];
        out_val[..len_div].clone_from_slice(&self.label_val[..len_div]);
        out_val[len_div] = (self.label_val[len_div] >> (7 - len_remainder)) << (7 - len_remainder);

        Self {
            label_val: out_val,
            label_len: len,
        }
    }

    /// Creates a new NodeLabel representing the root.
    pub fn root() -> Self {
        Self::new([0u8; 32], 0)
    }

    /// Creates a new [NodeLabel] with the given value and len (in bits).
    pub fn new(val: [u8; 32], len: u32) -> Self {
        NodeLabel {
            label_val: val,
            label_len: len,
        }
    }

    /// Gets the length of a NodeLabel in bits.
    pub fn get_len(&self) -> u32 {
        self.label_len
    }

    /// Gets the value of a NodeLabel.
    pub fn get_val(&self) -> [u8; 32] {
        self.label_val
    }

    /// Gets the prefix ordering of other with respect to self, if self is a prefix of other.
    /// If self is not a prefix of other, then this returns [PrefixOrdering::Invalid].
    pub fn get_prefix_ordering(&self, other: Self) -> PrefixOrdering {
        if self.get_len() >= other.get_len() {
            return PrefixOrdering::Invalid;
        }
        if other.get_prefix(self.get_len()) != self.get_prefix(self.get_len()) {
            // Note: we check self.get_prefix(self.get_len()) here instead of just *self
            // because equality checks for a [NodeLabel] do not ignore the bits of label_val set
            // beyond label_len.
            return PrefixOrdering::Invalid;
        }
        if let Ok(bit) = other.get_bit_at(self.get_len()) {
            return PrefixOrdering::from(bit);
        }

        PrefixOrdering::Invalid
    }
}

/// Returns the bit at a specified index (either a 0 or a 1) of a slice of bytes
///
/// If the index is out of range (exceeds or is equal to the length of the input in bytes * 8),
/// returns an error
fn get_bit_from_slice(input: &[u8], index: u32) -> Result<Bit, String> {
    if (input.len() as u32) * 8 <= index {
        return Err(format!(
            "Input is too short: index = {index}, input.len() = {}",
            input.len()
        ));
    }
    let usize_index: usize = index as usize;
    let index_full_blocks = usize_index / 8;
    let index_remainder = usize_index % 8;
    if (input[index_full_blocks] >> (7 - index_remainder)) & 1 == 0 {
        Ok(Bit::Zero)
    } else {
        Ok(Bit::One)
    }
}