1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
use crate::evolution::EvolutionStep;
use crate::{Akaze, KeyPoint};
use log::*;
use std::f32::consts::PI;

impl Akaze {
    /// Compute scale space extrema to get the detector response.
    ///
    /// # Argument
    /// * `evolutions` - evolutions to mutate in place.
    /// * `options` - options to use.
    fn find_scale_space_extrema(&self, evolutions: &mut Vec<EvolutionStep>) -> Vec<KeyPoint> {
        let mut keypoint_cache: Vec<KeyPoint> = vec![];
        let smax = 10.0f32 * f32::sqrt(2.0f32);
        for (e_id, evolution) in evolutions.iter_mut().enumerate() {
            let w = evolution.Ldet.width();
            let h = evolution.Ldet.height();
            // maintain 5 iterators, one for the current pixel and one
            // for each cardinal pixel. Iterate through all non-border
            // pixels
            let mut x_m_iter = evolution.Ldet.iter();
            let mut x_m_i = x_m_iter.nth(w).unwrap(); // 0, 1
            let mut x_iter = evolution.Ldet.iter();
            let mut x_i = x_iter.nth(w + 1).unwrap(); // 1, 1
            let mut x_p_iter = evolution.Ldet.iter();
            let mut x_p_i = x_p_iter.nth(w + 2).unwrap(); // 2, 1
            let mut y_m_iter = evolution.Ldet.iter();
            let mut y_m_i = y_m_iter.nth(1).unwrap(); // 1, 0
            let mut y_p_iter = evolution.Ldet.iter();
            let mut y_p_i = y_p_iter.nth(2 * w + 1).unwrap(); // 1, 2
                                                              // Iterate from 1,1 to the second-to-last pixel of the second-to-last row
            for i in (w + 1)..(evolution.Ldet.len() - w - 1) {
                let x = i % w;
                let y = i / w;
                // Apply detector threshold
                if x != 0 && x != w && // do nothing for border pixels we will encounter in the iteration range
                *x_i > (self.detector_threshold as f32) &&
                *x_i > *x_p_i &&
                *x_i > *x_m_i &&
                *x_i > *y_m_i &&
                *x_i > *y_p_i
                {
                    let mut keypoint = KeyPoint {
                        response: f32::abs(*x_i),
                        size: (evolution.esigma * self.derivative_factor) as f32,
                        octave: evolution.octave as usize,
                        class_id: e_id,
                        point: (x as f32, y as f32),
                        angle: 0f32, // This is computed later - it is not needed for candidates
                    };
                    let ratio = f32::powf(2.0f32, evolution.octave as f32);
                    let sigma_size = f32::round(keypoint.size / ratio);
                    // Compare response with same and lower scale
                    let mut id_repeated = 0;
                    let mut is_repeated = false;
                    let mut is_extremum = true;
                    for (k, prev_keypoint) in keypoint_cache.iter().enumerate() {
                        if keypoint.class_id == prev_keypoint.class_id
                            || (keypoint.class_id != 0
                                && keypoint.class_id - 1 == prev_keypoint.class_id)
                        {
                            let dist = (keypoint.point.0 * ratio - prev_keypoint.point.0)
                                * (keypoint.point.0 * ratio - prev_keypoint.point.0)
                                + (keypoint.point.1 * ratio - prev_keypoint.point.1)
                                    * (keypoint.point.1 * ratio - prev_keypoint.point.1);
                            if dist <= keypoint.size * keypoint.size {
                                if keypoint.response > prev_keypoint.response {
                                    id_repeated = k;
                                    is_repeated = true;
                                } else {
                                    is_extremum = false;
                                }
                                break;
                            }
                        }
                    }
                    // Check bounds
                    if is_extremum {
                        // Check that the point is under the image limits for the descriptor computation
                        let left_x = f32::round(keypoint.point.0 - smax * sigma_size) - 1f32;
                        let right_x = f32::round(keypoint.point.0 + smax * sigma_size) + 1f32;
                        let up_y = f32::round(keypoint.point.1 - smax * sigma_size) - 1f32;
                        let down_y = f32::round(keypoint.point.1 + smax * sigma_size) + 1f32;
                        let is_out = left_x < 0f32
                            || right_x >= (w as f32)
                            || up_y < 0f32
                            || down_y >= (h as f32);
                        if !is_out {
                            keypoint.point = (
                                keypoint.point.0 * ratio + 0.5f32 * (ratio - 1.0f32),
                                keypoint.point.1 * ratio + 0.5f32 * (ratio - 1.0f32),
                            );
                            if !is_repeated {
                                keypoint_cache.push(keypoint);
                            } else {
                                keypoint_cache[id_repeated] = keypoint;
                            }
                        }
                    }
                }

                // increment iterators
                x_i = x_iter.next().unwrap();
                x_m_i = x_m_iter.next().unwrap();
                x_p_i = x_p_iter.next().unwrap();
                y_m_i = y_m_iter.next().unwrap();
                y_p_i = y_p_iter.next().unwrap();
            }
        }
        // Now filter points with the upper scale level
        let mut output_keypoints: Vec<KeyPoint> = vec![];
        for i in 0..keypoint_cache.len() {
            let mut is_repeated = false;
            let kp_i = keypoint_cache[i];
            for kp_j in &keypoint_cache[i..] {
                // Compare response with the upper scale
                if (kp_i.class_id + 1) == kp_j.class_id {
                    let dist = (kp_i.point.0 - kp_j.point.0) * (kp_i.point.0 - kp_j.point.0)
                        + (kp_i.point.1 - kp_j.point.1) * (kp_i.point.1 - kp_j.point.1);
                    if dist <= kp_i.size * kp_i.size {
                        is_repeated = true;
                        break;
                    }
                }
            }
            if !is_repeated {
                output_keypoints.push(kp_i);
            }
        }
        debug!("Extracted {} scale space extrema.", output_keypoints.len());
        output_keypoints
    }

    /// Detect keypoints in an image given a nonlinear scale space. Detects
    /// scale space extrema and performs sub-pixel refinement.
    ///
    /// # Arguments
    /// * `evolutions` - The fully-constructed non-linear scale space.
    /// * `options` - The options to use.
    /// # Return value
    /// The resulting keypoints.
    pub fn detect_keypoints(&self, evolutions: &mut Vec<EvolutionStep>) -> Vec<KeyPoint> {
        let mut keypoints = self.find_scale_space_extrema(evolutions);
        keypoints = do_subpixel_refinement(&keypoints, &evolutions);
        keypoints
    }
}

/// A 7x7 Gaussian kernel.
#[allow(clippy::excessive_precision)]
static GAUSS25: [[f32; 7usize]; 7usize] = [
    [
        0.0254_6481f32,
        0.0235_0698f32,
        0.0184_9125f32,
        0.0123_9505f32,
        0.0070_8017f32,
        0.0034_4629f32,
        0.0014_2946f32,
    ],
    [
        0.0235_0698f32,
        0.0216_9968f32,
        0.0170_6957f32,
        0.0114_4208f32,
        0.0065_3582f32,
        0.0031_8132f32,
        0.0013_1956f32,
    ],
    [
        0.0184_9125f32,
        0.0170_6957f32,
        0.0134_2740f32,
        0.0090_0066f32,
        0.0051_4126f32,
        0.0025_0252f32,
        0.0010_3800f32,
    ],
    [
        0.0123_9505f32,
        0.0114_4208f32,
        0.0090_0066f32,
        0.0060_3332f32,
        0.0034_4629f32,
        0.0016_7749f32,
        0.0006_9579f32,
    ],
    [
        0.0070_8017f32,
        0.0065_3582f32,
        0.0051_4126f32,
        0.0034_4629f32,
        0.0019_6855f32,
        0.0009_5820f32,
        0.0003_9744f32,
    ],
    [
        0.0034_4629f32,
        0.0031_8132f32,
        0.0025_0252f32,
        0.0016_7749f32,
        0.0009_5820f32,
        0.0004_6640f32,
        0.0001_9346f32,
    ],
    [
        0.0014_2946f32,
        0.0013_1956f32,
        0.0010_3800f32,
        0.0006_9579f32,
        0.0003_9744f32,
        0.0001_9346f32,
        0.0000_8024f32,
    ],
];

/// Compute the main orientation of the keypoint.
fn compute_main_orientation(keypoint: &mut KeyPoint, evolutions: &[EvolutionStep]) {
    let mut res_x: [f32; 109usize] = [0f32; 109usize];
    let mut res_y: [f32; 109usize] = [0f32; 109usize];
    let mut angs: [f32; 109usize] = [0f32; 109usize];
    let id: [usize; 13usize] = [6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6];
    let ratio = (1 << evolutions[keypoint.class_id].octave) as f32;
    let s = f32::round(0.5f32 * (keypoint.size as f32) / ratio);
    let xf = keypoint.point.0 / ratio;
    let yf = keypoint.point.1 / ratio;
    let level = keypoint.class_id;
    // Calculate derivatives responses for points within radius of 6*scale
    let mut idx = 0;
    for i in -6..=6 {
        for j in -6..=6 {
            if i * i + j * j < 36 {
                let iy = f32::round(yf + (j as f32) * s) as usize;
                let ix = f32::round(xf + (i as f32) * s) as usize;
                let gweight = GAUSS25[id[(i + 6) as usize]][id[(j + 6) as usize]];
                res_x[idx] = gweight * evolutions[level].Lx.get(ix, iy);
                res_y[idx] = gweight * evolutions[level].Ly.get(ix, iy);
                angs[idx] = res_y[idx].atan2(res_y[idx]);
                idx += 1;
            }
        }
    }
    // Loop slides pi/3 window around feature point
    let mut ang1 = 0f32;
    let mut sum_x = 0f32;
    let mut sum_y = 0f32;
    let mut max = 0f32;
    while ang1 < 2.0f32 * PI {
        let ang2 = if ang1 + PI / 3.0f32 > 2.0f32 * PI {
            ang1 - 5.0f32 * PI / 3.0f32
        } else {
            ang1 + PI / 3.0f32
        };
        ang1 += 0.15f32;
        for k in 0..109 {
            let ang = angs[k];
            if (ang1 < ang2 && ang1 < ang && ang < ang2)
                || (ang2 < ang1 && ((ang > 0f32 && ang < ang2) || (ang > ang1 && ang < 2.0 * PI)))
            {
                sum_x += res_x[k];
                sum_y += res_y[k];
            }
        }
        // if the vector produced from this window is longer than all
        // previous vectors then this forms the new dominant direction
        let val = sum_x * sum_x + sum_y * sum_y;
        if val > max {
            // store largest orientation
            max = val;
            keypoint.angle = sum_y.atan2(sum_x);
        }
    }
}

/// Do sub-pixel refinement
///
/// # Arguments
/// * `in_keypoints` - The keypoints to use.
/// * `evolutions` - The non-linear scale space.
/// # Return value
/// The resulting keypoints.
fn do_subpixel_refinement(
    in_keypoints: &[KeyPoint],
    evolutions: &[EvolutionStep],
) -> Vec<KeyPoint> {
    let mut result: Vec<KeyPoint> = vec![];
    for keypoint in in_keypoints.iter() {
        let ratio = f32::powf(2.0f32, keypoint.octave as f32);
        let x = f32::round(keypoint.point.0 / ratio) as usize;
        let y = f32::round(keypoint.point.1 / ratio) as usize;
        let x_i = evolutions[keypoint.class_id].Ldet.get(x, y);
        let x_p = evolutions[keypoint.class_id].Ldet.get(x + 1, y);
        let x_m = evolutions[keypoint.class_id].Ldet.get(x - 1, y);
        let y_p = evolutions[keypoint.class_id].Ldet.get(x, y + 1);
        let y_m = evolutions[keypoint.class_id].Ldet.get(x, y - 1);
        let x_p_y_p = evolutions[keypoint.class_id].Ldet.get(x + 1, y + 1);
        let x_p_y_m = evolutions[keypoint.class_id].Ldet.get(x + 1, y - 1);
        let x_m_y_p = evolutions[keypoint.class_id].Ldet.get(x - 1, y + 1);
        let x_m_y_m = evolutions[keypoint.class_id].Ldet.get(x - 1, y - 1);
        // Derivative
        let d_x = 0.5f32 * (x_p - x_m);
        let d_y = 0.5f32 * (y_p - y_m);
        // Hessian
        let d_xx = x_p + x_m - 2f32 * x_i;
        let d_yy = y_p + y_m - 2f32 * x_i;
        let d_xy = 0.25f32 * (x_p_y_p + x_m_y_m) - 0.25f32 * (x_p_y_m + x_m_y_p);
        let inv_det_a = (d_xx * d_yy - d_xy * d_xy).recip();
        let inv_a = [
            inv_det_a * d_yy,
            inv_det_a * -d_xy,
            inv_det_a * -d_xy,
            inv_det_a * d_xx,
        ];
        let dst = [
            -d_x * inv_a[0] + -d_y * inv_a[1],
            -d_x * inv_a[2] + -d_y * inv_a[3],
        ];
        if f32::abs(dst[0]) <= 1.0 && f32::abs(dst[1]) <= 1.0 {
            let mut keypoint_clone = *keypoint;
            keypoint_clone.point = ((x as f32) + dst[0], (y as f32) + dst[1]);
            keypoint_clone.point = (
                keypoint_clone.point.0 * ratio + 0.5f32 * (ratio - 1f32),
                keypoint_clone.point.1 * ratio + 0.5f32 * (ratio - 1f32),
            );
            result.push(keypoint_clone);
        }
    }
    debug!(
        "{}/{} remain after subpixel refinement.",
        result.len(),
        in_keypoints.len()
    );
    for mut keypoint in result.iter_mut() {
        compute_main_orientation(&mut keypoint, &evolutions);
    }
    result
}