1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
// Rust binding to libairspy
// Copyright 2015 Adam Greig <adam@adamgreig.com>
// Licensed under the MIT License.

extern crate num;

use std::ffi::CStr;
use std::result;
use std::str;
use std::sync::mpsc::Sender;
use num::Complex;

mod ffi;

/// Store a reference to an opened Airspy device.
pub struct Airspy {
    ptr: *mut ffi::airspy_device
}

/// Ensure whenever the Airspy goes out of scope it is closed.
impl Drop for Airspy {
    #[inline(never)]
    fn drop(&mut self) {
        unsafe { ffi::airspy_close(self.ptr); }
    }
}

/// Hold major, minor and revision version numbers of libairspy C library.
pub struct LibVersion {
    pub major: u32,
    pub minor: u32,
    pub revision: u32
}

/// Hold an Airspy's part ID and serial number.
pub struct PartID {
    pub part_id: [u32; 2],
    pub serial_no: u64
}

/// Represent IQ data, either f32 or i16
pub type IQ<T> = Complex<T>;

/// Represent real-only data, either f32 or i16 or u16
pub type Real<T> = T;

/// Trait for all allowable sample types
// TODO: update to use associated constants when that hits stable
pub trait SampleType: Clone { fn get_type() -> ffi::airspy_sample_type; }
impl SampleType for IQ<f32> { fn get_type() -> ffi::airspy_sample_type {
    ffi::airspy_sample_type::AIRSPY_SAMPLE_FLOAT32_IQ } }
impl SampleType for IQ<i16> { fn get_type() -> ffi::airspy_sample_type {
    ffi::airspy_sample_type::AIRSPY_SAMPLE_INT16_IQ } }
impl SampleType for Real<f32> { fn get_type() -> ffi::airspy_sample_type {
    ffi::airspy_sample_type::AIRSPY_SAMPLE_FLOAT32_REAL } }
impl SampleType for Real<i16> { fn get_type() -> ffi::airspy_sample_type {
    ffi::airspy_sample_type::AIRSPY_SAMPLE_INT16_REAL } }
impl SampleType for Real<u16> { fn get_type() -> ffi::airspy_sample_type {
    ffi::airspy_sample_type::AIRSPY_SAMPLE_UINT16_REAL } }

/// Choice of GPIO port
pub enum GPIOPort {
    Port0, Port1, Port2, Port3, Port4, Port5, Port6, Port7
}

/// Choice of GPIO pin
pub enum GPIOPin {
    Pin0,  Pin1,  Pin2,  Pin3,  Pin4,  Pin5,  Pin6,  Pin7,
    Pin8,  Pin9,  Pin10, Pin11, Pin12, Pin13, Pin14, Pin15,
    Pin16, Pin17, Pin18, Pin19, Pin20, Pin21, Pin22, Pin23,
    Pin24, Pin25, Pin26, Pin27, Pin28, Pin29, Pin30, Pin31
}

/// GPIO Direction
pub enum GPIODirection {
    Input, Output
}

/// Error type for libairspy functions.
#[derive(Debug)]
pub struct FFIError {
    errno: ffi::airspy_error
}

impl FFIError {
    fn new(err: ffi::airspy_error) -> FFIError {
        FFIError { errno: err }
    }

    fn errstr(&self) -> &str {
        let cstr = unsafe {
            CStr::from_ptr(ffi::airspy_error_name(self.errno))
        };
        str::from_utf8(cstr.to_bytes()).unwrap()
    }
}

impl std::fmt::Display for FFIError {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        write!(f, "Airspy Error: {}", self.errstr())
    }
}

impl std::error::Error for FFIError {
    fn description(&self) -> &str {
        self.errstr()
    }
}

/// Result type for libairspy functions.
pub type Result<T> = result::Result<T, FFIError>;

/// Fetch the current version of libairspy C library.
pub fn lib_version() -> LibVersion {
    let mut v = ffi::airspy_lib_version_t {
        major_version: 0, minor_version: 0, revision: 0};
    unsafe { ffi::airspy_lib_version(&mut v); }

    LibVersion {
        major: v.major_version, minor: v.minor_version, revision: v.revision}
}

macro_rules! ffifn {
    ($f:expr, $r:expr) => (
        match unsafe { $f } {
            ffi::airspy_error::AIRSPY_SUCCESS => Ok($r),
            err => Err(FFIError::new(err))
        }
    );
    ($f:expr) => (
        ffifn!($f, ())
    );
}

/// Callback in Rust to send to the libairspy C library that sends buffers
/// through to a user channel, quitting streaming when the channel hangs up.
extern fn rx_cb<T>(transfer: *mut ffi::airspy_transfer_t) -> ffi::c_int
    where T: SampleType
{
    let transfer = unsafe { &*transfer };
    let sample_count = transfer.sample_count as usize;
    let buffer = unsafe {
        std::slice::from_raw_parts(transfer.samples as *const T, sample_count)
    }.to_vec();

    // Turn the ctx into a &Sender and send the buffer along it.
    // If it works, keep asking for more samples, but if not, we'll quit.
    let sender: &Sender<Vec<T>> = unsafe { &*(transfer.ctx as *const _)};
    match sender.send(buffer) {
        Ok(_) => 0,
        Err(_) => {
            // Drop the Sender to prevent leaks,
            // then tell libairspy to stop streaming.
            let boxed: Box<Sender<Vec<T>>> = unsafe {
                std::mem::transmute(transfer.ctx as *const _) };
            std::mem::drop(boxed);
            1
        }
    }
}


/// Initialise the Airspy library. Call once at application startup.
pub fn init() -> Result<()> {
    ffifn!(ffi::airspy_init())
}

/// Deinitialise the Airspy library. Call once at application end.
pub fn exit() -> Result<()> {
    ffifn!(ffi::airspy_exit())
}

impl Airspy {
    /// Try to open the next available Airspy device.
    pub fn new() -> Result<Airspy> {
        let mut device: Airspy = Airspy{ ptr: unsafe { std::mem::zeroed() }};
        ffifn!(ffi::airspy_open(&mut device.ptr), device)
    }

    /// Try to open a specific Airspy device by serial number.
    pub fn from_serial(serial_number: u64) -> Result<Airspy> {
        let mut device: Airspy = Airspy{ ptr: unsafe { std::mem::zeroed() }};
        ffifn!(ffi::airspy_open_sn(&mut device.ptr, serial_number), device)
    }

    /// Get available sample rates for this Airspy.
    pub fn get_sample_rates(&mut self) -> Result<Vec<u32>> {
        let mut len: u32 = 0;
        let lenp = &mut len as *mut u32;
        try!(ffifn!(ffi::airspy_get_samplerates(self.ptr, lenp, 0)));
        let mut rates: Vec<u32> = Vec::with_capacity(len as usize);
        let ratesp = rates.as_mut_ptr();
        try!(ffifn!(ffi::airspy_get_samplerates(self.ptr, ratesp, len)));
        unsafe { rates.set_len(len as usize); }
        Ok(rates)
    }

    /// Set this Airspy's sample rate to a specific rate.
    ///
    /// This rate must be in the available rates or an error is returned.
    pub fn set_sample_rate(&mut self, target_rate: u32) -> Result<()> {
        let rates = try!(self.get_sample_rates());
        for (idx, rate) in rates.iter().enumerate() {
            if *rate == target_rate {
                return ffifn!(ffi::airspy_set_samplerate(
                    self.ptr, idx as u32));
            }
        }
        Err(FFIError::new(ffi::airspy_error::AIRSPY_ERROR_INVALID_PARAM))
    }

    /// Start RX streaming from the Airspy.
    ///
    /// The given channel will be sent Vec<T> when Airspy callbacks occur. When
    /// the remote channel hangs up, libairspy is told to stop streaming and
    /// the Sender is dropped.
    ///
    /// T is used to set the sample type and may be IQ<f32>, IQ<i16>,
    /// Real<f32>, Real<i16> or Real<u16>.
    pub fn start_rx<T>(&mut self, sender: Sender<Vec<T>>) -> Result<()>
        where T: SampleType
    {
        // Set the Airspy to the correct sample type
        try!(ffifn!(ffi::airspy_set_sample_type(self.ptr, T::get_type())));

        // Box the Sender to move it onto the heap, then get a void* to it.
        let boxed_sender = Box::new(sender);
        let ctx = &*boxed_sender as *const _ as *mut ffi::c_void;

        // Forget the heap Sender so it is not immediately destroyed.
        std::mem::forget(boxed_sender);

        // Start data reception
        ffifn!(ffi::airspy_start_rx(self.ptr, rx_cb::<T>, ctx))
    }

    /// Check if the Airspy is currently streaming.
    pub fn is_streaming(&mut self) -> bool {
        unsafe { ffi::airspy_is_streaming(self.ptr) == 1 }
    }

    /// Write a register on the Si5351C
    pub fn si5351c_write(&mut self, register: u8, value: u8) -> Result<()> {
        ffifn!(ffi::airspy_si5351c_write(self.ptr, register, value))
    }

    /// Read a register on the Si5351C
    pub fn si5351c_read(&mut self, register: u8) -> Result<u8> {
        let mut val: u8 = 0;
        try!(ffifn!(ffi::airspy_si5351c_read(
            self.ptr, register, &mut val as *mut u8)));
        Ok(val)
    }

    /// Write a register on the R820t
    pub fn r820t_write(&mut self, register: u8, value: u8) -> Result<()> {
        ffifn!(ffi::airspy_r820t_write(self.ptr, register, value))
    }

    /// Read a register on the R820t
    pub fn r820t_read(&mut self, register: u8) -> Result<u8> {
        let mut val: u8 = 0;
        try!(ffifn!(ffi::airspy_r820t_read(
            self.ptr, register, &mut val as *mut u8)));
        Ok(val)
    }

    fn map_gpio_port_pin(port: GPIOPort, pin: GPIOPin)
            -> (ffi::airspy_gpio_port_t, ffi::airspy_gpio_pin_t) {
        (match port {
            GPIOPort::Port0 => ffi::airspy_gpio_port_t::GPIO_PORT0,
            GPIOPort::Port1 => ffi::airspy_gpio_port_t::GPIO_PORT1,
            GPIOPort::Port2 => ffi::airspy_gpio_port_t::GPIO_PORT2,
            GPIOPort::Port3 => ffi::airspy_gpio_port_t::GPIO_PORT3,
            GPIOPort::Port4 => ffi::airspy_gpio_port_t::GPIO_PORT4,
            GPIOPort::Port5 => ffi::airspy_gpio_port_t::GPIO_PORT5,
            GPIOPort::Port6 => ffi::airspy_gpio_port_t::GPIO_PORT6,
            GPIOPort::Port7 => ffi::airspy_gpio_port_t::GPIO_PORT7,
        }, match pin {
            GPIOPin::Pin0  => ffi::airspy_gpio_pin_t::GPIO_PIN0,
            GPIOPin::Pin1  => ffi::airspy_gpio_pin_t::GPIO_PIN1,
            GPIOPin::Pin2  => ffi::airspy_gpio_pin_t::GPIO_PIN2,
            GPIOPin::Pin3  => ffi::airspy_gpio_pin_t::GPIO_PIN3,
            GPIOPin::Pin4  => ffi::airspy_gpio_pin_t::GPIO_PIN4,
            GPIOPin::Pin5  => ffi::airspy_gpio_pin_t::GPIO_PIN5,
            GPIOPin::Pin6  => ffi::airspy_gpio_pin_t::GPIO_PIN6,
            GPIOPin::Pin7  => ffi::airspy_gpio_pin_t::GPIO_PIN7,
            GPIOPin::Pin8  => ffi::airspy_gpio_pin_t::GPIO_PIN8,
            GPIOPin::Pin9  => ffi::airspy_gpio_pin_t::GPIO_PIN9,
            GPIOPin::Pin10 => ffi::airspy_gpio_pin_t::GPIO_PIN10,
            GPIOPin::Pin11 => ffi::airspy_gpio_pin_t::GPIO_PIN11,
            GPIOPin::Pin12 => ffi::airspy_gpio_pin_t::GPIO_PIN12,
            GPIOPin::Pin13 => ffi::airspy_gpio_pin_t::GPIO_PIN13,
            GPIOPin::Pin14 => ffi::airspy_gpio_pin_t::GPIO_PIN14,
            GPIOPin::Pin15 => ffi::airspy_gpio_pin_t::GPIO_PIN15,
            GPIOPin::Pin16 => ffi::airspy_gpio_pin_t::GPIO_PIN16,
            GPIOPin::Pin17 => ffi::airspy_gpio_pin_t::GPIO_PIN17,
            GPIOPin::Pin18 => ffi::airspy_gpio_pin_t::GPIO_PIN18,
            GPIOPin::Pin19 => ffi::airspy_gpio_pin_t::GPIO_PIN19,
            GPIOPin::Pin20 => ffi::airspy_gpio_pin_t::GPIO_PIN20,
            GPIOPin::Pin21 => ffi::airspy_gpio_pin_t::GPIO_PIN21,
            GPIOPin::Pin22 => ffi::airspy_gpio_pin_t::GPIO_PIN22,
            GPIOPin::Pin23 => ffi::airspy_gpio_pin_t::GPIO_PIN23,
            GPIOPin::Pin24 => ffi::airspy_gpio_pin_t::GPIO_PIN24,
            GPIOPin::Pin25 => ffi::airspy_gpio_pin_t::GPIO_PIN25,
            GPIOPin::Pin26 => ffi::airspy_gpio_pin_t::GPIO_PIN26,
            GPIOPin::Pin27 => ffi::airspy_gpio_pin_t::GPIO_PIN27,
            GPIOPin::Pin28 => ffi::airspy_gpio_pin_t::GPIO_PIN28,
            GPIOPin::Pin29 => ffi::airspy_gpio_pin_t::GPIO_PIN29,
            GPIOPin::Pin30 => ffi::airspy_gpio_pin_t::GPIO_PIN30,
            GPIOPin::Pin31 => ffi::airspy_gpio_pin_t::GPIO_PIN31,
        })
    }

    /// Write a GPIO port:pin to `val`, false to clear or true to set.
    pub fn gpio_write(&mut self, port: GPIOPort, pin: GPIOPin, val: bool)
        -> Result<()>
    {
        let (port, pin) = Airspy::map_gpio_port_pin(port, pin);
        ffifn!(ffi::airspy_gpio_write(self.ptr, port, pin, val as u8))
    }

    /// Read a GPIO port:pin
    pub fn gpio_read(&mut self, port: GPIOPort, pin: GPIOPin) -> Result<bool> {
        let mut val: u8 = 0;
        let (port, pin) = Airspy::map_gpio_port_pin(port, pin);
        try!(ffifn!(ffi::airspy_gpio_read(
            self.ptr, port, pin, &mut val as *mut u8)));
        Ok(match val {
            0 => false,
            1 => true,
            _ => unreachable!()
        })
    }

    /// Set a GPIO port:pin direction.
    pub fn gpio_set_direction(&mut self, port: GPIOPort, pin: GPIOPin,
        dir: GPIODirection) -> Result<()>
    {
        let (port, pin) = Airspy::map_gpio_port_pin(port, pin);
        let dir: u8 = match dir {
            GPIODirection::Input => 0,
            GPIODirection::Output => 1
        };
        ffifn!(ffi::airspy_gpiodir_write(self.ptr, port, pin, dir))
    }

    /// Get a GPIO port:pin direction.
    pub fn gpio_get_direction(&mut self, port: GPIOPort, pin: GPIOPin)
        -> Result<GPIODirection>
    {
        let mut dir: u8 = 0;
        let (port, pin) = Airspy::map_gpio_port_pin(port, pin);
        try!(ffifn!(ffi::airspy_gpiodir_read(
            self.ptr, port, pin, &mut dir as *mut u8)));
        Ok(match dir {
            0 => GPIODirection::Input,
            1 => GPIODirection::Output,
            _ => unreachable!()
        })
    }

    /// Get the Airspy board type.
    pub fn get_board_id(&mut self) -> Result<&str> {
        let mut id: u8 = 0;
        try!(ffifn!(ffi::airspy_board_id_read(self.ptr, &mut id as *mut u8)));
        let cstr = unsafe {
            CStr::from_ptr(ffi::airspy_board_id_name(id))
        };
        Ok(str::from_utf8(cstr.to_bytes()).unwrap())
    }

    /// Get the Airspy firmware version number.
    pub fn get_version(&mut self) -> Result<String> {
        let mut buf: Vec<i8> = Vec::with_capacity(255);
        let bufp = buf.as_mut_ptr();
        try!(ffifn!(ffi::airspy_version_string_read(self.ptr, bufp, 255)));
        let cstr = unsafe { CStr::from_ptr(buf.as_ptr()) };
        Ok(String::from(str::from_utf8(cstr.to_bytes()).unwrap()))
    }

    /// Get the Airspy part ID and serial number.
    pub fn get_partid_serial(&mut self) -> Result<PartID> {
        let mut v = ffi::airspy_read_partid_serialno_t {
            part_id: [0u32; 2],
            serial_no: [0u32; 4]
        };
        try!(ffifn!(ffi::airspy_board_partid_serialno_read(self.ptr, &mut v)));
        Ok(PartID {
            part_id: v.part_id,
            serial_no: (v.serial_no[2] as u64) << 32 | v.serial_no[3] as u64
        })
    }

    /// Set Airspy centre frequency, `freq` 24000000 to 1750000000 (in Hz)
    pub fn set_freq(&mut self, freq: u32) -> Result<()> {
        ffifn!(ffi::airspy_set_freq(self.ptr, freq))
    }

    /// Set LNA gain, 0 to 15dB
    pub fn set_lna_gain(&mut self, gain: u8) -> Result<()> {
        ffifn!(ffi::airspy_set_lna_gain(self.ptr, gain))
    }

    /// Set mixer gain, 0 to 15dB
    pub fn set_mixer_gain(&mut self, gain: u8) -> Result<()> {
        ffifn!(ffi::airspy_set_mixer_gain(self.ptr, gain))
    }

    /// Set VGA gain, 0 to 15dB
    pub fn set_vga_gain(&mut self, gain: u8) -> Result<()> {
        ffifn!(ffi::airspy_set_vga_gain(self.ptr, gain))
    }

    /// Enable/disable LNA AGC
    pub fn set_lna_agc(&mut self, enable: bool) -> Result<()> {
        ffifn!(ffi::airspy_set_lna_agc(self.ptr, enable as u8))
    }

    /// Enable/disable mixer AGC
    pub fn set_mixer_agc(&mut self, enable: bool) -> Result<()> {
        ffifn!(ffi::airspy_set_mixer_agc(self.ptr, enable as u8))
    }

    /// Enable/disable RF bias voltage
    pub fn set_rf_bias(&mut self, enable: bool) -> Result<()> {
        ffifn!(ffi::airspy_set_rf_bias(self.ptr, enable as u8))
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_lib_version() {
        let v = lib_version();
        assert!(v.major == 1);
        assert!(v.minor == 0);
        assert!(v.revision >= 6);
    }

    #[test]
    fn test_init() {
        assert!(init().is_ok());
        let _ = exit();
    }

    #[test]
    fn test_exit() {
        let _ = init();
        assert!(exit().is_ok());
    }

    #[test]
    fn test_new() {
        let _ = init();
        let airspy = Airspy::new();
        assert!(airspy.is_ok());
        let _ = exit();
    }

    #[test]
    fn test_from_serial() {
        let _ = init();
        let mut serial: u64;
        {
            let mut airspy = Airspy::new().unwrap();
            let v = airspy.get_partid_serial().unwrap();
            serial = v.serial_no;
        }
        let airspy = Airspy::from_serial(serial);
        assert!(airspy.is_ok());
        let _ = exit();
    }

    #[test]
    fn test_get_sample_rates() {
        let _ = init();
        let mut airspy = Airspy::new().unwrap();
        let rates = airspy.get_sample_rates();
        assert!(rates.is_ok());
        let rates = rates.unwrap();
        assert!(rates.len() == 2);
        assert!(rates.contains(&2500000));
        assert!(rates.contains(&10000000));
        let _ = exit();
    }

    #[test]
    fn test_set_sample_rate() {
        let _ = init();
        let mut airspy = Airspy::new().unwrap();
        assert!(airspy.set_sample_rate(10_000_000).is_ok());
    }

    #[test]
    fn test_start_rx() {
        let _ = init();
        let mut airspy = Airspy::new().unwrap();
        let (tx, _) = ::std::sync::mpsc::channel();
        assert!(airspy.start_rx::<IQ<f32>>(tx).is_ok());
    }

    #[test]
    fn test_is_streaming() {
        let _ = init();
        let mut airspy = Airspy::new().unwrap();
        assert!(airspy.is_streaming() == false);
    }

    #[test]
    fn test_si5351c_read() {
        let mut airspy = Airspy::new().unwrap();
        assert!(airspy.si5351c_read(16).is_ok());
    }

    #[test]
    fn test_si5351c_write() {
        let mut airspy = Airspy::new().unwrap();
        let val = airspy.si5351c_read(16).unwrap();
        assert!(airspy.si5351c_write(16, val).is_ok());
    }

    #[test]
    fn test_r820t_read() {
        let mut airspy = Airspy::new().unwrap();
        assert!(airspy.r820t_read(0x0F).is_ok());
    }

    #[test]
    fn test_r820t_write() {
        let mut airspy = Airspy::new().unwrap();
        let val = airspy.r820t_read(0x0F).unwrap();
        assert!(airspy.r820t_write(0x0F, val).is_ok());
    }

    #[test]
    fn test_gpio_read() {
        let mut airspy = Airspy::new().unwrap();
        assert!(airspy.gpio_read(GPIOPort::Port0, GPIOPin::Pin0).is_ok());
    }

    #[test]
    fn test_gpio_write() {
        let mut airspy = Airspy::new().unwrap();
        let val = airspy.gpio_read(GPIOPort::Port0, GPIOPin::Pin0).unwrap();
        assert!(airspy.gpio_write(
            GPIOPort::Port0, GPIOPin::Pin0, val).is_ok());
    }

    #[test]
    fn test_gpio_get_dir() {
        let mut airspy = Airspy::new().unwrap();
        assert!(airspy.gpio_get_direction(
            GPIOPort::Port0, GPIOPin::Pin0).is_ok());
    }

    #[test]
    fn test_gpio_set_dir() {
        let mut airspy = Airspy::new().unwrap();
        let dir = airspy.gpio_get_direction(
            GPIOPort::Port0, GPIOPin::Pin0).unwrap();
        assert!(airspy.gpio_set_direction(
            GPIOPort::Port0, GPIOPin::Pin0, dir).is_ok());
    }

    #[test]
    fn test_get_board() {
        let _ = init();
        let mut airspy = Airspy::new().unwrap();
        assert!(airspy.get_board_id().unwrap() == "AIRSPY");
    }

    #[test]
    fn test_get_version() {
        let _ = init();
        let mut airspy = Airspy::new().unwrap();
        assert!(airspy.get_version().is_ok());
        // Don't check this value as it is hardware-dependent.
    }

    #[test]
    fn test_get_partid_serial() {
        let _ = init();
        let mut airspy = Airspy::new().unwrap();
        assert!(airspy.get_partid_serial().is_ok());
        // Don't check these values as they are hardware-dependent.
    }

    #[test]
    fn test_set_freq() {
        let _ = init();
        let mut airspy = Airspy::new().unwrap();
        assert!(airspy.set_freq(434000000).is_ok());
    }

    #[test]
    fn test_set_lna_gain() {
        let _ = init();
        let mut airspy = Airspy::new().unwrap();
        assert!(airspy.set_lna_gain(7).is_ok());
    }

    #[test]
    fn test_set_mixer_gain() {
        let _ = init();
        let mut airspy = Airspy::new().unwrap();
        assert!(airspy.set_mixer_gain(7).is_ok());
    }

    #[test]
    fn test_set_vga_gain() {
        let _ = init();
        let mut airspy = Airspy::new().unwrap();
        assert!(airspy.set_vga_gain(7).is_ok());
    }

    #[test]
    fn test_set_lna_agc() {
        let _ = init();
        let mut airspy = Airspy::new().unwrap();
        assert!(airspy.set_lna_agc(true).is_ok());
    }

    #[test]
    fn test_set_mixer_agc() {
        let _ = init();
        let mut airspy = Airspy::new().unwrap();
        assert!(airspy.set_mixer_agc(true).is_ok());
    }

    #[test]
    fn test_set_rf_bias() {
        let _ = init();
        let mut airspy = Airspy::new().unwrap();
        assert!(airspy.set_rf_bias(true).is_ok());
    }
}