1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
///Genetic Algorithm, similar to BinaryF6
extern crate rand;

use chromosome::rand::Rng;

///A chromosome struct to be used to generate binary genes.
#[derive(Debug)]
pub struct Chromosome {
    genes: Vec<i32>,
}

impl Chromosome {
    ///new() instantiates a new Chromosome. It has 44 genes (0 or 1) in a vector
    #[allow(dead_code)]
    pub fn new() -> Chromosome {
        let mut rng = rand::thread_rng();
        let mut vec : Vec<i32> = Vec::new();
        for _ in 0..44 {
            vec.push(rng.gen::<i32>().abs() % 2);
        }
        Chromosome {genes: vec}
    }

    ///x_y() is used to get a fitness value for the genes combination. (X: i32, Y: i32) is a tuple used to calculate fitness
    #[allow(dead_code)]
    fn x_y(&self) -> (i32, i32) {
        let x: i32 = self.genes[0..22].iter().map(|x| x.pow(2)).fold(0i32, |sum, x| sum + x) -11i32;
        let y: i32 = self.genes[22..44].iter().map(|y| y.pow(2)).fold(0i32, |sum, y| sum + y) -11i32;
        (x, y)
    }

    ///fitness is the adaptability of the respective chromosome. Fitness should be between 0 and 1, where 1 is best.
    #[allow(dead_code)]
    pub fn fitness(&self) -> f32 {
        let xyv = vec![self.x_y().0 as f32, self.x_y().1 as f32];
        let xy = xyv.iter().fold(0f32, |sum, xy| sum + xy.powi(2));
        let mant = xy.sqrt().sin().powi(2);
        let fitness = 0.5f32 - ((mant - 0.5f32) / (1f32 + (0.001f32 * xy * xy)));
        fitness
    }

    ///During the evolution process a chromosome should mutate.
    ///Chromosomes should be able to mutate during the eveolution process
    #[allow(dead_code)]
    pub fn mutate(&mut self) {
        let mut rng = rand::thread_rng();
        let idx = rng.gen::<usize>() % 44;
        self.genes.insert(idx, rng.gen::<i32>() % 2);
        self.genes.remove(idx + 1);
    }
}

///Crosses over two individuals genes
#[allow(dead_code)]
fn cross_over(indv1: &Vec<i32>, indv2: &Vec<i32>) -> Vec<i32> {
    let mut new_gene = Vec::new();
    for i in 0..44 {
        if i < 22 {
            new_gene.push(indv1[i]);
        } else {
            new_gene.push(indv2[i]);
        }
    }
    new_gene
}

///Gets Best Chromosome fitness
#[allow(dead_code)]
fn get_best(pop: Vec<Chromosome>) -> Vec<i32> {
    let mut fitness = 0f32;
    let mut best = Vec::new();
    for indv in &pop {
        if indv.fitness() > fitness {
            fitness = indv.fitness();
            best = indv.genes.clone();
        }
    }
    best
}

///Generate as initial population
#[allow(dead_code)]
fn generate_pop() -> Vec<Chromosome> {
    let mut pop = Vec::new();
    for _ in 0..100 {
        pop.push(Chromosome::new());
    }
    pop
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn chromosome_creation() {
        let individual = Chromosome {genes: vec![1, 1]};
        assert_eq!(individual.genes.len(), 2)
    }

    #[test]
    fn creates_binary_chromosome() {
        let mut individual = Chromosome::new();

        assert!(individual.genes.iter().all(|&x| x as i32 == 0i32 || x as i32 == 1i32));
    }

    #[test]
    fn fitness_xy_tuple_in_range() {
        let individual = Chromosome::new();
        let xy = individual.x_y();
        assert!(xy.0 >= -11i32 && xy.0 <= 11i32);
        assert!(xy.1 >= -11i32 && xy.1 <= 11i32);
    }

    #[test]
    fn fitness_in_range() {
        let individual = Chromosome::new();
        let fitness = individual.fitness();
        assert!(fitness >= 0f32 && fitness <= 1f32);
    }

    #[test]
    fn has_mutated() {
        let mut individual = Chromosome::new();
        let prev_genes = individual.genes.clone();
        individual.mutate();
        individual.mutate();
        individual.mutate();
        individual.mutate();
        assert!(individual.genes != prev_genes);
        assert_eq!(individual.genes.len(), 44);
    }

    #[test]
    fn has_crossovered() {
        let indv1 = Chromosome::new();
        let indv2 = Chromosome::new();
        let mut new_indv = Vec::new();
        new_indv = cross_over(&indv1.genes, &indv2.genes);
        assert_eq!(&new_indv[0..22], &indv1.genes[0..22]);
        assert_eq!(&new_indv[22..44], &indv2.genes[22..44]);
    }

    #[test]
    fn instanciate_crossovered_gene() {
        let indv1 = Chromosome::new();
        let indv2 = Chromosome::new();
        let mut new_indv = Vec::new();
        new_indv = cross_over(&indv1.genes, &indv2.genes);
        let individual = Chromosome {genes: new_indv.to_vec()};
        assert_eq!(new_indv, individual.genes);
    }

    #[test] //May fail due to randomness
    fn get_best_returns_last() {
        let mut pop = Vec::new();
        pop.push(Chromosome::new());
        let indv2 = Chromosome {genes: vec![1; 44]};
        let indv3 = Chromosome {genes: indv2.genes.clone()};
        pop.push(indv2);
        assert_eq!(indv3.genes, get_best(pop));
    }

    #[test]
    fn initial_pop_is_100_sized() {
        let pop = generate_pop();
        assert_eq!(pop.len(), 100);
    }
}