ai_dataloader/collate/torch_collate/
map.rs1use super::super::Collate;
2use super::TorchCollate;
3use std::{
4 cmp::Eq,
5 collections::{BTreeMap, HashMap},
6 hash::{BuildHasher, Hash},
7};
8
9impl<K, V, H> Collate<HashMap<K, V, H>> for TorchCollate
10where
11 K: Eq + Hash + Clone,
12 V: Clone,
13 Self: Collate<V>,
14 H: BuildHasher,
15{
16 type Output = HashMap<K, <Self as Collate<V>>::Output>;
17 fn collate(&self, batch: Vec<HashMap<K, V, H>>) -> Self::Output {
18 let mut collated = HashMap::with_capacity(batch[0].keys().len());
19 for key in batch[0].keys() {
20 let vec: Vec<_> = batch.iter().map(|hash_map| hash_map[key].clone()).collect();
21 collated.insert(key.clone(), self.collate(vec));
22 }
23 collated
24 }
25}
26impl<K, V> Collate<BTreeMap<K, V>> for TorchCollate
27where
28 K: Ord + Clone,
29 V: Clone,
30 Self: Collate<V>,
31{
32 type Output = BTreeMap<K, <Self as Collate<V>>::Output>;
33 fn collate(&self, batch: Vec<BTreeMap<K, V>>) -> Self::Output {
34 let mut collated = BTreeMap::new();
35 for key in batch[0].keys() {
36 let vec: Vec<_> = batch.iter().map(|hash_map| hash_map[key].clone()).collect();
37 collated.insert(key.clone(), self.collate(vec));
38 }
39 collated
40 }
41}
42
43#[cfg(test)]
44mod tests {
45 use super::*;
46 use tch::Tensor;
47
48 #[test]
49 fn vec_of_hash_map() {
50 let map1 = HashMap::from([("A", 0), ("B", 1)]);
51 let map2 = HashMap::from([("A", 100), ("B", 100)]);
52 let expected_result = HashMap::from([
53 ("A", Tensor::from_slice(&[0, 100])),
54 ("B", Tensor::from_slice(&[1, 100])),
55 ]);
56 assert_eq!(TorchCollate.collate(vec![map1, map2]), expected_result);
57
58 let map1 = HashMap::from([(1, 0), (2, 1)]);
60 let map2 = HashMap::from([(1, 100), (2, 100)]);
61 let expected_result = HashMap::from([
62 (1, Tensor::from_slice(&[0, 100])),
63 (2, Tensor::from_slice(&[1, 100])),
64 ]);
65 assert_eq!(TorchCollate.collate(vec![map1, map2]), expected_result);
66
67 let map1 = HashMap::from([("A", 0.0), ("B", 1.0)]);
68 let map2 = HashMap::from([("A", 100.0), ("B", 100.0)]);
69 let expected_result = HashMap::from([
70 ("A", Tensor::from_slice(&[0.0, 100.0])),
71 ("B", Tensor::from_slice(&[1.0, 100.0])),
72 ]);
73 assert_eq!(TorchCollate.collate(vec![map1, map2]), expected_result);
74 }
75
76 #[test]
77 fn specialized() {
78 let map1 = HashMap::from([("A", String::from("0")), ("B", String::from("1"))]);
79 let map2 = HashMap::from([("A", String::from("100")), ("B", String::from("100"))]);
80 let expected_result = HashMap::from([
81 ("A", vec![String::from("0"), String::from("100")]),
82 ("B", vec![String::from("1"), String::from("100")]),
83 ]);
84 assert_eq!(TorchCollate.collate(vec![map1, map2]), expected_result);
85
86 let map1 = HashMap::from([("A", "0"), ("B", "1")]);
87 let map2 = HashMap::from([("A", "100"), ("B", "100")]);
88 let expected_result = HashMap::from([("A", vec!["0", "100"]), ("B", vec!["1", "100"])]);
89 assert_eq!(TorchCollate.collate(vec![map1, map2]), expected_result);
90 }
91}