1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
#![cfg_attr(not(test), no_std)]
//! AHT20 driver.
//!
//! Example:
//!
//!     # use embedded_hal_mock::delay::MockNoop as MockDelay;
//!     # use embedded_hal_mock::i2c::Mock as I2cMock;
//!     # use embedded_hal_mock::i2c::Transaction;
//!     # use aht20_driver::{AHT20, AHT20Initialized, Command, SENSOR_ADDRESS};
//!     # let expectations = vec![
//!     #     // check_status immediately succeeds, we don't need to send Initialize.
//!     #     Transaction::read(SENSOR_ADDRESS, vec![0b0000_1000]),
//!     #     // send_trigger_measurement
//!     #     Transaction::write(
//!     #         SENSOR_ADDRESS,
//!     #         vec![
//!     #             Command::TriggerMeasurement as u8,
//!     #             0b0011_0011, // 0x33
//!     #             0b0000_0000, // 0x00
//!     #         ],
//!     #     ),
//!     #     // check_status - with ready bit set to 'ready' (off)
//!     #     Transaction::read(SENSOR_ADDRESS, vec![0b0000_1000]),
//!     #     // We can now read 7 bytes. status byte, 5 data bytes, crc byte.
//!     #     // These are taken from a run of the sensor.
//!     #     Transaction::read(
//!     #         SENSOR_ADDRESS,
//!     #         vec![
//!     #             0b0001_1100, //  28, 0x1c - ready, calibrated, and some mystery flags.
//!     #             //             bit 8 set to 0 is ready. bit 4 set is calibrated. bit 5
//!     #             //             and 3 are described as 'reserved'.
//!     #             0b0110_0101, // 101, 0x65 - first byte of humidity value
//!     #             0b1011_0100, // 180, 0xb4 - second byte of humidity vaue
//!     #             0b0010_0101, //  37, 0x25 - split byte. 4 bits humidity, 4 bits temperature.
//!     #             0b1100_1101, // 205, 0xcd - first full byte of temperature.
//!     #             0b0010_0110, //  38, 0x26 - second full byte of temperature.
//!     #             0b1100_0110, // 198, 0xc6 - CRC
//!     #         ],
//!     #     ),
//!     # ];
//!     # let mock_i2c = I2cMock::new(&expectations);
//!     # let mut mock_delay = MockDelay::new();
//!     let mut aht20_uninit = AHT20::new(mock_i2c, SENSOR_ADDRESS);
//!     let mut aht20 = aht20_uninit.init(&mut mock_delay).unwrap();
//!     let measurement = aht20.measure(&mut mock_delay).unwrap();
//!
//!     println!("temperature (aht20): {:.2}C", measurement.temperature);
//!     println!("humidity (aht20): {:.2}%", measurement.humidity);
//!
//! [AHT20 Datasheet](https://cdn-learn.adafruit.com/assets/assets/000/091/676/original/AHT20-datasheet-2020-4-16.pdf?1591047915)
//!
//! Note that the datasheet linked directly from the manufacturer's website
//! [Aogong AHT20](http://www.aosong.com/en/products-32.html) is an older datasheet (version
//! 1.0, rather than version 1.1 as linked above) and is significantly more
//! difficult to understand. I recommend reading version 1.1. All section
//! references in this file are to the 1.1 version.
//!
//! The below is a flowchart of how the sensor gets initialized and measurements taken.
//! Note that the flowchart does not include the parameters that you need to give to
//! some commands, and it also doesn't include the SoftReset command flow.
//!
//! ```text
//!           Start (Power on)
//!                  │
//!                  ▼
//!              Wait 40 ms
//!                  │
//!                  ▼
//!           Read status byte    ◄───     Wait 10 ms
//!                  │                           ▲
//!                  ▼                           │
//!          Status::Calibrated ──► No ──► Command::Initialize (0xBE)
//!                  │
//!                  ▼
//!                 Yes
//!                  │
//!                  ▼
//! Command::TriggerMeasurement  (0xAC)  ◄─┐
//!                  │                     │
//!                  ▼                     │
//!             Wait 80 ms                 │
//!                  │                     │
//!                  ▼                     │
//!           Read status byte    ◄──┐     │
//!                  │               │     │
//!                  ▼               │     │
//!             Status::Busy  ───►  Yes    │
//!                  │                     │
//!                  ▼                     │
//!                 No                     │
//!                  │                     │
//!                  ▼                     │
//!             Read 7 bytes               │
//!                  │                     │
//!                  ▼                     │
//!             Calculate CRC              │
//!                  │                     │
//!                  ▼                     │
//!               CRC good ─► No  ─────────┘
//!                  │                     ▲
//!                  ▼                     │
//!                 Yes                    │
//!                  │                     │
//!                  ▼                     │
//!           CRC-checked Ready ─► No ─────┘
//!                  │
//!                  ▼
//!                 Yes
//!                  │
//!                  ▼
//!        Calc Humidity and Temp
//! ```

use crc_any::CRCu8;
use embedded_hal::blocking::delay::{DelayMs, DelayUs};
use embedded_hal::blocking::i2c;

/// AHT20 sensor's I2C address.
pub const SENSOR_ADDRESS: u8 = 0b0011_1000; // This is I2C address 0x38;

/// Commands that can be sent to the AHT20 sensor.
///
/// Note that a few of these take parameters but that there are no explanations provided about what
/// those parameters actually are. You should consider the command and specified parameters to be
/// just one three-byte command. These can be found in the datasheet, Section 5.3, page 8, Table 9.
pub enum Command {
    Initialize = 0b1011_1110, // 0xBE, Initialize and calibrate the sensor.
    // This command takes two bytes of parameter: 0b0000_1000 (0x08), then 0b0000_0000 (0x00).
    Calibrate = 0b1110_0001, // 0xE1, Calibrate - or return calibration status.
    // Status will be Status::Calibrated, where bit4 indicates calibrated. If it's 0, it's not.
    TriggerMeasurement = 0b1010_1100, // 0xAC
    // This command takes two bytes of parameter: 0b00110011 (0x33), then 0b0000_0000 (0x00).
    // Wait 80ms for the measurement. You'll get a status byte back. Check the status for
    // Status::Busy to be 0. If it is, then read 7 bytes. A status byte, 5 data plus a byte of CRC.
    SoftReset = 0b1011_1010, // 0xBA
                             // Also see Section 5.5. This takes 20ms or less to complete.
}

/// Status byte meanings.
///
/// Table 10, page 8 of the datasheet.
pub enum Status {
    Busy = 0b1000_0000, // Status bit for busy - 8th bit enabled. 1<<7, 0x80
    // 1 is Busy measuring. 0 is "Free in dormant state" or "ready".
    Calibrated = 0b0000_1000, // Status bit for calibrated - 4th bit enabled. 1<<3, 0x08.
                              // 1 is Calibrated, 0 is uncalibrated. If 0, send Command::Initialize.
}

/// SensorStatus is the response from the sensor indicating if it is ready to read from, and if it
/// is calibrated.
///
/// This is returned from the `check_status` method. It is used both
/// during initialization, which is when the sensor caibrates itself, and during
/// measure. During measure the sensor will report itself as busy (not ready)
/// for a period of 80ms.
#[derive(Debug, Clone, Copy)]
pub struct SensorStatus(pub u8);

impl SensorStatus {
    /// Create a new SensorStatus from an AHT20 status byte.
    ///
    /// That byte comes from the `check_status` method.
    pub fn new(status: u8) -> Self {
        SensorStatus(status)
    }

    /// Check if the sensor is ready to have data read from it. After issuing a sensor read, you
    /// must check is_ready before reading the result. The measure function takes care of this wait
    /// and check.
    pub fn is_ready(self) -> bool {
        // The busy bit should be 0 (not busy) for the sensor to report ready.
        (self.0 & Status::Busy as u8) == 0
    }

    /// Check if the sensor is calibrated. If it is not, you must call `init` to initialize the
    /// sensor.
    pub fn is_calibrated(self) -> bool {
        // The calibrated bit should be set.
        (self.0 & Status::Calibrated as u8) != 0
    }
}

/// SensorReading is a single reading from the AHT20 sensor.
///
/// This is returned from the `measure` method. You get:
/// * humidity in % Relative Humidity
/// * temperature in degrees Celsius.
#[derive(Debug, Clone, Copy)]
pub struct SensorReading {
    pub humidity: f32,
    pub temperature: f32,
}

impl SensorReading {
    /// Create a SensorReading from the data returned by the sensor.
    ///
    /// This is done by the `measure` method.
    fn from_bytes(sensor_data: [u8; 5]) -> Self {
        let (humidity_val, temperature_val) = SensorReading::raw_from_bytes(sensor_data);

        // From section 6.1 "Relative humidity transformation" here is how we turn this into
        // a relative humidity percantage value.
        let humidity_percent = (humidity_val as f32) / ((1 << 20) as f32) * 100.0;

        // From section 6.2 "Temperature transformation" here is how we turn this into
        // a temprature in °C.
        let temperature_celcius = (temperature_val as f32) / ((1 << 20) as f32) * 200.0 - 50.0;

        SensorReading {
            humidity: humidity_percent,
            temperature: temperature_celcius,
        }
    }

    /// Identical to `from_bytes`, but doesn't use floating point math.
    ///
    /// This limits the precision to just integer values, but doesn't bring in floating point
    /// libraries on microcontrollers with no FP support, saving space and being faster.
    fn from_bytes_no_fp(sensor_data: [u8; 5]) -> Self {
        let (humidity_val, temperature_val) = SensorReading::raw_from_bytes(sensor_data);

        // From section 6.1 "Relative humidity transformation" here is how we turn this into
        // a relative humidity percantage value.
        let humidity_percent = (100 * humidity_val) >> 20;

        // From section 6.2 "Temperature transformation" here is how we turn this into
        // a temprature in °C.
        let temperature_celcius = (((200 * temperature_val) >> 20) - 50) as f32;

        SensorReading {
            humidity: humidity_percent as f32,
            temperature: temperature_celcius,
        }
    }

    /// Turn the raw data from a sensor reding into two u32 raw values.
    ///
    /// These values still need to be converted into %age humidity and degrees C, this is done with
    /// `from_bytes` and `from_bytes_no_fp`. This is just a helper method for the aforementioned.
    fn raw_from_bytes(sensor_data: [u8; 5]) -> (u32, u32) {
        // Our five bytes of sensor data is split into 20 bits (two and a half bytes) humidity and
        // 20 bits temperature. We'll have to spend a bit of time splitting the middle byte up.
        let humidity_bytes: &[u8] = &sensor_data[..2];
        let split_byte: u8 = sensor_data[2];
        let temperature_bytes: &[u8] = &sensor_data[3..5];

        // We have a byte that might look like 0x0101_1010, we want only the first four bits, (the
        // 0101) to be at the end of the byte. So we shift them four right and end up with
        // 0x0000_0101. These 4 bits go at the very end of our 20-bit humidity value.
        // In the final 32-bit value they're these ones: 0x0000_0000_0000_0000_0000_0000_0000_1111
        let right_bits_humidity: u32 = (split_byte >> 4).into();
        // In the final 32-bit value they're these ones: 0x0000_0000_0000_1111_1111_0000_0000_0000
        let left_bits_humidity: u32 = (humidity_bytes[0] as u32) << 12;
        // In the final 32-bit value they're these ones: 0x0000_0000_0000_0000_0000_1111_1111_0000
        let middle_bits_humidity: u32 = (humidity_bytes[0] as u32) << 4;
        // We combine them to form the complete 20 bits: 0x0000_0000_0000_1111_1111_1111_1111_1111
        let humidity_val: u32 = left_bits_humidity | middle_bits_humidity | right_bits_humidity;

        // With that same example byte - we want to keep only the last four bits this time, so we
        // mask the first four and end up with 0x0000_1010. These bits end up at the very start of
        // our 20-bit temperature value. In the final 32-bit value they're these ones:
        // 0x0000_0000_0000_1111_0000_0000_0000_0000 To get them into their final position - we'll
        // left-shift them by 16 positions.
        let split_byte_temperature: u32 = (split_byte & 0b0000_1111).into();
        // We need to fill the rightmost 20 bits, starting with our split byte
        // In the final 32-bit value they're these ones: 0x0000_0000_0000_1111_0000_0000_0000_0000
        let left_bits_temp: u32 = split_byte_temperature << 16;
        // In the final 32-bit value they're these ones: 0x0000_0000_0000_0000_1111_1111_0000_0000
        let middle_bits_temp: u32 = (temperature_bytes[0] as u32) << 8;
        // And just for symmetry...
        // In the final 32-bit value they're these ones: 0x0000_0000_0000_0000_0000_0000_1111_1111
        let right_bits_temp: u32 = temperature_bytes[1] as u32;
        // We combine them to form the complete 20 bits: 0x0000_0000_0000_1111_1111_1111_1111_1111
        let temperature_val: u32 = left_bits_temp | middle_bits_temp | right_bits_temp;

        (humidity_val, temperature_val)
    }
}

/// Driver errors.
#[derive(Debug, PartialEq)]
pub enum Error<E> {
    /// I2C bus error
    I2c(E),
    /// CRC validation failed
    InvalidCrc,
    /// Unexpectedly not ready - this can happen when the sensor sends back "busy" but the
    /// I2C data gets corrupted and we receive "ready", then later the
    /// CRC-checked status byte correctly reports "busy" and we have to abort the measurement.
    UnexpectedBusy,
    /// Errors such as overflowing the stack.
    Internal,
}

/// An AHT20 sensor on the I2C bus `I`.
///
/// The address of the sensor will be `SENSOR_ADDRESS` from this package, unless there is some kind
/// of special address translating hardware in use.
pub struct AHT20<I>
where
    I: i2c::Read + i2c::Write,
{
    i2c: I,
    address: u8,
}

impl<E, I> AHT20<I>
where
    I: i2c::Read<Error = E> + i2c::Write<Error = E>,
{
    /// Initializes the AHT20 driver.
    ///
    /// This consumes the I2C bus `I`. Before you can get temperature and humidity measurements,
    /// you must call the `init` method which calibrates the sensor. The address will almost always
    /// be `SENSOR_ADDRESS` from this crate.
    pub fn new(i2c: I, address: u8) -> Self {
        AHT20 { i2c, address }
    }

    /// Run the AHT20 init and calibration routines.
    ///
    /// This must be called before any other methods except `check_status`. This method will take
    /// *at least* 40ms to return.
    ///
    /// ```text
    ///          Start (Power on)
    ///                 │
    ///                 ▼
    ///             Wait 40 ms
    ///                 │
    ///                 ▼
    ///           Read  status byte    ◄───    Wait 10 ms
    ///                 │                           ▲
    ///                 ▼                           │
    ///         Status::Calibrated ──► No ──► Command::Initialize (0xBE)
    ///                 │
    ///                 ▼
    ///                Yes
    /// ```
    pub fn init(
        &mut self,
        delay: &mut (impl DelayUs<u16> + DelayMs<u16>),
    ) -> Result<AHT20Initialized<I>, Error<E>> {
        delay.delay_ms(40_u16);

        while !self.check_status()?.is_calibrated() {
            self.send_initialize()?;
            defmt::debug!("init: waiting for sensor to report being calibrated, 10ms.");
            delay.delay_ms(10_u16);
        }

        defmt::debug!("init: sensor reporting being calibrated, init done.");
        Ok(AHT20Initialized { aht20: self })
    }

    /// check_Status reads a status byte from the AHT20 sensor to check its status.
    ///
    /// The sensor can be calibrated or not, also busy generating a sensor measurement or ready.
    /// This method returns the SensorStatus struct, which you can use to determine what the state
    /// of the sensor is.
    ///
    /// NOTE: The documentation suggests that we send a CheckStatus (0x71) command, followed by a
    ///       read. Experience (https://github.com/anglerud/aht20-driver/pull/10) indicates that we
    ///       can create a hang writing that command, and that just reading a status byte works.
    ///
    /// This is used by both measure_once and init.
    fn check_status(&mut self) -> Result<SensorStatus, Error<E>> {
        defmt::debug!("check_status: requesting a status check from sensor.");
        let mut read_buffer = [0u8; 1];

        self.i2c
            .read(self.address, &mut read_buffer)
            .map_err(Error::I2c)?;

        let status_byte = read_buffer[0];
        Ok(SensorStatus::new(status_byte))
    }

    /// send_initialize sends the Initialize command to the sensor which make it calibrate.
    ///
    /// After sending initialize, there is a required 40ms wait period and verification
    /// that the sensor reports itself calibrated. See the `init` method.
    fn send_initialize(&mut self) -> Result<(), Error<E>> {
        defmt::debug!("send_initialize: requesting sensor to initialize itself.");
        let command: [u8; 3] = [
            // Initialize = 0b1011_1110. Equivalent to 0xBE, Section 5.3, page 8, Table 9
            Command::Initialize as u8,
            // Two parameters as described in the datasheet. There is no indication what these
            // parameters mean, just that they should be provided. There is also no returned
            // value.
            0b0000_1000, // 0x08
            0b0000_0000, // 0x00
        ];

        self.i2c.write(self.address, &command).map_err(Error::I2c)?;

        Ok(())
    }

    /// Destroys this driver and releases the I2C bus `I`
    pub fn destroy(self) -> Self {
        self
    }
}

/// AHT20Initialized is returned by AHT20::init() and the sensor is ready to read from.
///
/// In this state you can trigger a measurement with `.measure(&mut delay)`.
pub struct AHT20Initialized<'a, I>
where
    I: i2c::Read + i2c::Write,
{
    aht20: &'a mut AHT20<I>,
}

impl<'a, E, I> AHT20Initialized<'a, I>
where
    I: i2c::Read<Error = E> + i2c::Write<Error = E>,
{
    /// Measure temperature and humidity.
    ///
    /// This masurement takes at least 80ms to complete. Together with the `measure_once` method,
    /// this is the work being carried out:
    ///
    /// ```text
    /// Command::TriggerMeasurement (0xAC)   ◄─┐
    ///                  │                     │
    ///                  ▼                     │
    ///             Wait 80 ms                 │
    ///                  │                     │
    ///                  ▼                     │
    ///           Read status byte    ◄──┐     │
    ///                  │               │     │
    ///                  ▼               │     │
    ///             Status::Busy  ───►  Yes    │
    ///                  │                     │
    ///                  ▼                     │
    ///                 No                     │
    ///                  │                     │
    ///                  ▼                     │
    ///             Read 7 bytes               │
    ///                  │                     │
    ///                  ▼                     │
    ///             Calculate CRC              │
    ///                  │                     │
    ///                  ▼                     │
    ///               CRC good ─► No  ─────────┘
    ///                  │                     ▲
    ///                  ▼                     │
    ///                 Yes                    │
    ///                  │                     │
    ///                  ▼                     │
    ///           CRC-checked Ready ─► No ─────┘
    ///                  │
    ///                  ▼
    ///                 Yes
    ///                  │
    ///                  ▼
    ///        Calc Humidity and Temp
    /// ```
    pub fn measure(
        &mut self,
        delay: &mut (impl DelayUs<u16> + DelayMs<u16>),
    ) -> Result<SensorReading, Error<E>> {
        loop {
            let measurement_result = self.measure_once(delay);
            match measurement_result {
                Ok(sb) => {
                    return Ok(SensorReading::from_bytes(sb));
                }
                Err(Error::InvalidCrc) => {
                    // CRC failed to validate, we'll go back and issue another read request.
                    defmt::error!("Invalid CRC, retrying.");
                }
                Err(Error::UnexpectedBusy) => {
                    // Possibly indicates the previously seen 'ready' was due to uncorrected noise.
                    defmt::error!("Sensor contradicted a ready status with a crc-checked busy.");
                }
                Err(other) => return Err(other),
            }
        }
    }

    /// This is identical to `measure`, except it doesn't use floating point math.
    ///
    /// This means it can be used on microcontrollers with no FP support, without having
    /// to bring in floating point math functions, which can take up a lot of space, and
    /// might be slow.
    ///
    /// The drawback is that precision is limited to only integer values.
    pub fn measure_no_fp(
        &mut self,
        delay: &mut (impl DelayUs<u16> + DelayMs<u16>),
    ) -> Result<SensorReading, Error<E>> {
        // TODO: See if we can refactor here, the only difference is from_bytes and
        //       from_bytes_no_fp.
        loop {
            let measurement_result = self.measure_once(delay);
            match measurement_result {
                Ok(sb) => {
                    return Ok(SensorReading::from_bytes_no_fp(sb));
                }
                Err(Error::InvalidCrc) => {
                    // CRC failed to validate, we'll go back and issue another read request.
                    defmt::error!("Invalid CRC, retrying.");
                }
                Err(Error::UnexpectedBusy) => {
                    // Possibly indicates the previously seen 'ready' was due to uncorrected noise.
                    defmt::error!("Sensor contradicted a ready status with a crc-checked busy.");
                }
                Err(other) => return Err(other),
            }
        }
    }

    /// Perform one measurement and return the sensor's 5 raw data bytes.
    ///
    /// This takes at least 80ms to complete, and only returns 2x20 bits in 5 bytes.
    /// This data is interpreted by the `measure` function.
    fn measure_once(
        &mut self,
        delay: &mut (impl DelayUs<u16> + DelayMs<u16>),
    ) -> Result<[u8; 5], Error<E>> {
        self.send_trigger_measurement()?;
        delay.delay_ms(80_u16);

        // Wait for measurement to be ready
        while !self.aht20.check_status()?.is_ready() {
            defmt::debug!("measure_once: waiting for ready, 1ms.");
            delay.delay_ms(1_u16);
        }

        // 1 byte status, 20 bits humidity + 20 bits temperature, 1 byte CRC
        let mut read_buffer = [0u8; 7];
        self.aht20
            .i2c
            .read(self.aht20.address, &mut read_buffer)
            .map_err(Error::I2c)?;

        let data: &[u8] = &read_buffer[..6];
        let crc_byte: u8 = read_buffer[6];

        let crc = compute_crc(data);
        if crc_byte != crc {
            return Err(Error::InvalidCrc);
        }

        // The first byte of the sensor's response is a repeat of the status byte.
        // There is a minescule chance that the previous ready message was caused
        // by noise on the i2c bus. This byte has been CRC-checked.
        let status = SensorStatus::new(read_buffer[0]);
        if !status.is_ready() {
            return Err(Error::UnexpectedBusy);
        }

        // Arrays implement TryFrom for slices. In case the length of the slice does not match
        // the requested array - it will return a TryFromSliceError, but we are selecting the
        // right number of bytes so there is no risk. Mapping to a generic error.
        data[1..6].try_into().map_err(|_| Error::Internal)
    }

    /// Send the "Trigger Measurement" command to the sensor.
    ///
    /// This does not return anything, it only instructs the sensor to get the data ready. After
    /// sending this command, you need to wait 80ms before attempting to read data back. See the
    /// `measure_once` function and the flowchart at the top of this file.
    fn send_trigger_measurement(&mut self) -> Result<(), Error<E>> {
        // TriggerMeasurement is 0b1010_1100. Equivalent to 0xAC: Section 5.3, page 8, Table 9
        // This command takes two bytes of parameter:  0b00110011 (0x33), then 0b0000_0000 (0x00).
        let command: [u8; 3] = [
            Command::TriggerMeasurement as u8,
            // Two parameters as described in the datasheet. There is no indication what these
            // parameters mean, just that they should be provided. There is no returned value.
            // To get the measurement, see [measure](measure).
            0b0011_0011, // 0x33
            0b0000_0000, // 0x00
        ];

        self.aht20
            .i2c
            .write(self.aht20.address, &command)
            .map_err(Error::I2c)?;

        Ok(())
    }

    /// Send the Soft Reset command to the sensor.
    ///
    /// This performs a soft reset, it's unclear when this might be needed. It takes 20ms to
    /// complete and returns nothing.
    pub fn soft_reset(
        &mut self,
        delay: &mut (impl DelayUs<u16> + DelayMs<u16>),
    ) -> Result<(), Error<E>> {
        // SoftReset is 0b1011_1010. Equivalent to 0xBA, Section 5.3, page 8, Table 9.
        let command: [u8; 1] = [Command::SoftReset as u8];

        self.aht20
            .i2c
            .write(self.aht20.address, &command)
            .map_err(Error::I2c)?;
        // The datasheet in section 5.5 says there is a guarantee that the reset time does
        // not exceed 20ms. We wait the full 20ms to ensure you can trigger a measurement
        // immediately after this function.
        delay.delay_ms(20_u16);

        Ok(())
    }

    /// Destroys this initialized driver and lets you release the I2C bus `I`
    pub fn destroy(self) -> Self {
        self
    }
}

/// compute_crc uses the CRCu8 algoritm from crc-any. The parameter choice makes this a
/// "CRC-8-Dallas/Maxim".
///
/// The CRC invocation takes some parameters, which we get from the datasheet:
/// https://cdn-learn.adafruit.com/assets/assets/000/091/676/original/AHT20-datasheet-2020-4-16.pdf?1591047915
/// Section 5.4.4:
///
/// > CRC initial vaue is 0xFF, crc8 check polynomial CRC[7:0]=1+x**4 + x**5 + x**8
///
/// https://en.wikipedia.org/wiki/Cyclic_redundancy_check#Polynomial_representations_of_cyclic_redundancy_checks
/// You can find it in the table on wikipedia, under "CRC-8-Dallas/Maxim", 1-Wire bus.
///
/// This article explains how we get from `CRC[7:0]=1 + x**4 + x**5 + x**8` to `0x31` as the hex
/// representation: http://www.sunshine2k.de/articles/coding/crc/understanding_crc.html#ch72
///
/// The **N is the Nth bit (zero indexed).
/// > The most significant bit [(x**8)] is left out in the hexadecimal representation
/// So that the leaves bit 0 (the +1 we do), 4, 5
///
/// So that gives us:
///
/// ```python
/// >>> hex(0x00110001)
/// '0x31'
/// ```
///
/// This is also what Knurling's test driver crate uses.
/// https://github.com/knurling-rs/test-driver-crate-example/blob/main/src/lib.rs#L59
/// which indicates this is either an I2C thing, or a common driver default as CRC parameters.
fn compute_crc(bytes: &[u8]) -> u8 {
    // Poly (0x31), bits (8), initial (0xff), final_xor (0x00), reflect (false).
    let mut crc = CRCu8::create_crc(0x31, 8, 0xff, 0x00, false);
    crc.digest(bytes);
    crc.get_crc()
}

#[cfg(test)]
mod tests {
    use super::{AHT20Initialized, Error, AHT20, SENSOR_ADDRESS};
    use embedded_hal_mock::delay::MockNoop as MockDelay;
    use embedded_hal_mock::i2c::Mock as I2cMock;
    use embedded_hal_mock::i2c::Transaction;

    /// Test SensorStatus reporting being ready.
    #[test]
    fn sensorstatus_is_ready() {
        let status = super::SensorStatus::new(0x00);
        assert!(status.is_ready());
    }

    /// Test SensorStatus reporting being busy.
    #[test]
    fn sensorstatus_is_not_ready() {
        // 8th bit being 1 signifies "busy"
        // Equiv to 0x01 << 7, or 128 (dec) or 0x80 (hex)
        let status = super::SensorStatus::new(0b1000_0000);
        assert!(!status.is_ready());
    }

    /// Test SensorStatus reporting being calibrated.
    #[test]
    fn sensorstatus_is_calibrated() {
        // 4th bit being 1 signifies the sensor being calibrated.
        // Equiv to 0x01 << 3, or 8 (dec) or 0x08
        let status = super::SensorStatus::new(0b0000_1000);
        assert!(status.is_calibrated());
    }

    /// Test SensorStatus reporting being uncalibrated.
    #[test]
    fn sensorstatus_is_not_calibrated() {
        let status = super::SensorStatus::new(0b0000_0000);
        assert!(!status.is_calibrated());
    }

    /// Test creating new AHT20 sensors.
    ///
    /// Test that we can create multiple AHT20 devices. We test this because it's one of the
    /// measures of success for this driver.
    #[test]
    fn aht20_new() {
        // In the real app we'd used shared-bus to share the i2c bus between the two drivers, but
        // I think this is fine for a test.
        let mock_i2c_1 = I2cMock::new(&[]);
        let mock_i2c_2 = I2cMock::new(&[]);

        let _aht20_1 = AHT20::new(mock_i2c_1, SENSOR_ADDRESS);
        let _aht20_2 = AHT20::new(mock_i2c_2, SENSOR_ADDRESS);
    }

    /// Test reading a status byte.
    #[test]
    fn check_status() {
        let expectations = vec![Transaction::read(SENSOR_ADDRESS, vec![0b0000_1000])];
        let mock_i2c = I2cMock::new(&expectations);

        let mut aht20 = AHT20::new(mock_i2c, SENSOR_ADDRESS);
        let status = aht20.check_status().unwrap();
        assert!(status.is_calibrated());

        let mut mock = aht20.destroy().i2c;
        mock.done(); // verify expectations
    }

    /// Test sending the i2c Initialize command.
    #[test]
    fn send_initialize() {
        let expectations = vec![Transaction::write(
            SENSOR_ADDRESS,
            vec![
                super::Command::Initialize as u8,
                0b0000_1000, // 0x08
                0b0000_0000, // 0x00
            ],
        )];
        let mock_i2c = I2cMock::new(&expectations);

        let mut aht20 = AHT20::new(mock_i2c, SENSOR_ADDRESS);
        aht20.send_initialize().unwrap();

        let mut mock = aht20.destroy().i2c;
        mock.done(); // verify expectations
    }

    /// Initialize sensor, with the sensor reporting calibrated immediately.
    ///
    /// No call to send_initialize will be required.
    #[test]
    fn init_with_calibrated_sensor() {
        // This test has check_status return an already calibrated sensor. This means
        // that send_initialize is not called.
        let expectations = vec![
            // 4th bit being 1 signifies the sensor being calibrated.
            // Equiv to 0x01 << 3, or 8 (dec) or 0x08
            Transaction::read(SENSOR_ADDRESS, vec![0b0000_1000]),
        ];
        let mock_i2c = I2cMock::new(&expectations);
        let mut mock_delay = MockDelay::new();

        let mut aht20 = AHT20::new(mock_i2c, SENSOR_ADDRESS);
        aht20.init(&mut mock_delay).unwrap();

        let mut mock = aht20.destroy().i2c;
        mock.done(); // verify expectations
    }

    /// Initialize sensor, with a report of an uncalibrated sensor.
    ///
    /// The sensor will report being uncalibrated once, then after initialization the sensor will
    /// report being calibrated.
    #[test]
    fn init_with_uncalibrated_sensor() {
        // This test has check_status return an uncalibrated sensor. With that, a call
        // to send_initialize is done to initialize and calibrate the sensor. A second
        // call to check_status verifies the new calibrated status.
        let expectations = vec![
            // 4th bit being 0 signifies the sensor not being calibrated.
            Transaction::read(SENSOR_ADDRESS, vec![0b0000_0000]),
            // This is send_initialize
            Transaction::write(
                SENSOR_ADDRESS,
                vec![
                    super::Command::Initialize as u8,
                    0b0000_1000, // 0x08
                    0b0000_0000, // 0x00
                ],
            ),
            // One more check_status will be called, this time with the 4th bit set
            // to 1 - signifying the sensor is now calibrated and we can finish the init.
            Transaction::read(SENSOR_ADDRESS, vec![0b0000_1000]),
        ];
        let mock_i2c = I2cMock::new(&expectations);
        let mut mock_delay = MockDelay::new();

        let mut aht20 = AHT20::new(mock_i2c, SENSOR_ADDRESS);
        aht20.init(&mut mock_delay).unwrap();

        let mut mock = aht20.destroy().i2c;
        mock.done(); // verify expectations
    }

    /// Test sending the i2c SoftReset command.
    #[test]
    fn soft_reset() {
        let expectations = vec![Transaction::write(
            SENSOR_ADDRESS,
            vec![super::Command::SoftReset as u8],
        )];
        let mock_i2c = I2cMock::new(&expectations);
        let mut mock_delay = MockDelay::new();

        let mut aht20 = AHT20::new(mock_i2c, SENSOR_ADDRESS);
        let mut aht20_init = AHT20Initialized { aht20: &mut aht20 };
        aht20_init.soft_reset(&mut mock_delay).unwrap();

        let mock = &mut aht20_init.destroy().aht20.i2c;
        mock.done(); // verify expectations
    }

    /// Test sending the i2c TriggerMeasurement command.
    #[test]
    fn send_trigger_measurement() {
        let expectations = vec![Transaction::write(
            SENSOR_ADDRESS,
            vec![
                super::Command::TriggerMeasurement as u8,
                0b0011_0011, // 0x33
                0b0000_0000, // 0x00
            ],
        )];
        let mock_i2c = I2cMock::new(&expectations);

        let mut aht20 = AHT20::new(mock_i2c, SENSOR_ADDRESS);
        let mut aht20_init = AHT20Initialized { aht20: &mut aht20 };
        aht20_init.send_trigger_measurement().unwrap();

        let mock = &mut aht20_init.destroy().aht20.i2c;
        mock.done(); // verify expectations
    }

    /// Measure once, sensor reports ready at once.
    ///
    /// No wait is needed in this scenario.
    #[test]
    fn measure_once_immediately_ready() {
        let expectations = vec![
            // send_trigger_measurement
            Transaction::write(
                SENSOR_ADDRESS,
                vec![
                    super::Command::TriggerMeasurement as u8,
                    0b0011_0011, // 0x33
                    0b0000_0000, // 0x00
                ],
            ),
            // check_status called. 4th bit set to to 1 - signifying the sensor is calibrated 8th
            // bit set to 0 (not busy), signalling that a measurement is ready for us to read.
            Transaction::read(SENSOR_ADDRESS, vec![0b0000_1000]),
            // We can now read 7 bytes. status byte, 5 data bytes, crc byte.
            // These are taken from a run of the sensor.
            Transaction::read(
                SENSOR_ADDRESS,
                vec![
                    0b0001_1100, //  28, 0x1c - ready, calibrated, and some mystery flags.
                    //             bit 8 set to 0 is ready. bit 4 set is calibrated. bit 5
                    //             and 3 are described as 'reserved'.
                    0b0110_0101, // 101, 0x65 - first byte of humidity value
                    0b1011_0100, // 180, 0xb4 - second byte of humidity vaue
                    0b0010_0101, //  37, 0x25 - split byte. 4 bits humidity, 4 bits temperature.
                    0b1100_1101, // 205, 0xcd - first full byte of temperature.
                    0b0010_0110, //  38, 0x26 - second full byte of temperature.
                    0b1100_0110, // 198, 0xc6 - CRC
                ],
            ),
        ];
        let mock_i2c = I2cMock::new(&expectations);
        let mut mock_delay = MockDelay::new();

        let mut aht20 = AHT20::new(mock_i2c, SENSOR_ADDRESS);
        let mut aht20_init = AHT20Initialized { aht20: &mut aht20 };
        aht20_init.measure_once(&mut mock_delay).unwrap();

        let mock = &mut aht20_init.destroy().aht20.i2c;
        mock.done(); // verify expectations
    }

    /// Measure once, sensor erroniously reports ready at once, then correctly reports
    /// busy in the CRC-checked status byte causing an error.
    ///
    /// No wait is needed in this scenario.
    #[test]
    fn measure_once_ready_misreported() {
        let expectations = vec![
            // send_trigger_measurement
            Transaction::write(
                SENSOR_ADDRESS,
                vec![
                    super::Command::TriggerMeasurement as u8,
                    0b0011_0011, // 0x33
                    0b0000_0000, // 0x00
                ],
            ),
            // check_status called. 4th bit set to to 1 - signifying the sensor is calibrated 8th
            // bit set to 0 (not busy), signalling that a measurement is ready for us to read.
            // NOTE: This read says we're not busy, that is "ready".
            Transaction::read(SENSOR_ADDRESS, vec![0b0000_1000]),
            // We can now read 7 bytes. status byte, 5 data bytes, crc byte.
            // These are taken from a run of the sensor.
            Transaction::read(
                SENSOR_ADDRESS,
                vec![
                    0b1001_1100, // 156, 0x9c - busy, calibrated, and some mystery flags.
                    //             bit 8 set to 1 is busy. bit 4 set is calibrated. bit 5
                    //             and 3 are described as 'reserved'.
                    //             NOTE: this says busy, contradicting the ready above.
                    0b0110_0101, // 101, 0x65 - first byte of humidity value
                    0b1011_0100, // 180, 0xb4 - second byte of humidity vaue
                    0b0010_0101, //  37, 0x25 - split byte. 4 bits humidity, 4 bits temperature.
                    0b1100_1101, // 205, 0xcd - first full byte of temperature.
                    0b0010_0110, //  38, 0x26 - second full byte of temperature.
                    0b0010_1010, // 424, 0x2a - CRC
                ],
            ),
        ];
        let mock_i2c = I2cMock::new(&expectations);
        let mut mock_delay = MockDelay::new();

        let mut aht20 = AHT20::new(mock_i2c, SENSOR_ADDRESS);
        let mut aht20_init = AHT20Initialized { aht20: &mut aht20 };
        // We received a ready from the check_status method, then a busy in the CRC-checked
        // status byte - and therefore we got the UnexpectedBusy.
        assert_eq!(
            aht20_init.measure_once(&mut mock_delay),
            Err(Error::UnexpectedBusy)
        );

        let mock = &mut aht20_init.destroy().aht20.i2c;
        mock.done(); // verify expectations
    }

    /// Measure once, with a wait inserted.
    ///
    /// We signal via check_status that a wait should be inserted before another attempt to read
    /// data from the sensor is made.
    #[test]
    fn measure_once_wait_once() {
        let expectations = vec![
            // send_trigger_measurement
            Transaction::write(
                SENSOR_ADDRESS,
                vec![
                    super::Command::TriggerMeasurement as u8,
                    0b0011_0011, // 0x33
                    0b0000_0000, // 0x00
                ],
            ),
            // check_status called. 4th bit set to to 1 - signifying the sensor is calibrated 8th
            // bit set to 1 (busy), signalling that we should wait for the sensor.
            Transaction::read(SENSOR_ADDRESS, vec![0b1000_1000]),
            // Next time round, we say that the sensor is good to go.
            Transaction::read(SENSOR_ADDRESS, vec![0b0000_1000]),
            // We can now read 7 bytes. status byte, 5 data bytes, crc byte.
            // These are taken from a run of the sensor.
            Transaction::read(
                SENSOR_ADDRESS,
                vec![
                    0b0001_1100, //  28, 0x1c - ready, calibrated, and some mystery flags.
                    //             bit 8 set to 0 is ready. bit 4 set is calibrated. bit 5
                    //             and 3 are described as 'reserved'.
                    0b0110_0101, // 101, 0x65 - first byte of humidity value
                    0b1011_0100, // 180, 0xb4 - second byte of humidity vaue
                    0b0010_0101, //  37, 0x25 - split byte. 4 bits humidity, 4 bits temperature.
                    0b1100_1101, // 205, 0xcd - first full byte of temperature.
                    0b0010_0110, //  38, 0x26 - second full byte of temperature.
                    0b1100_0110, // 198, 0xc6 - CRC
                ],
            ),
        ];
        let mock_i2c = I2cMock::new(&expectations);
        let mut mock_delay = MockDelay::new();

        let mut aht20 = AHT20::new(mock_i2c, SENSOR_ADDRESS);
        let mut aht20_init = AHT20Initialized { aht20: &mut aht20 };
        aht20_init.measure_once(&mut mock_delay).unwrap();

        let mock = &mut aht20_init.destroy().aht20.i2c;
        mock.done(); // verify expectations
    }

    /// Single measurement pass with bad CRC.
    ///
    /// Intentionally corrupt the read data to make sure we get a CRC error.
    #[test]
    fn measure_once_bad_crc() {
        let expectations = vec![
            // send_trigger_measurement
            Transaction::write(
                SENSOR_ADDRESS,
                vec![
                    super::Command::TriggerMeasurement as u8,
                    0b0011_0011, // 0x33
                    0b0000_0000, // 0x00
                ],
            ),
            // Check status, and  we say that the sensor is good to go.
            Transaction::read(SENSOR_ADDRESS, vec![0b0000_1000]),
            // We can now read 7 bytes. status byte, 5 data bytes, crc byte.
            // These are taken from a run of the sensor.
            Transaction::read(
                SENSOR_ADDRESS,
                vec![
                    0b0001_1100, //  28, 0x1c - ready, calibrated, and some mystery flags.
                    //             bit 8 set to 0 is ready. bit 4 set is calibrated. bit 5
                    //             and 3 are described as 'reserved'.
                    0b0110_0101, // 101, 0x65 - first byte of humidity value
                    0b1011_0100, // 180, 0xb4 - second byte of humidity vaue
                    0b0010_0101, //  37, 0x25 - split byte. 4 bits humidity, 4 bits temperature.
                    0b1100_1101, // 205, 0xcd - first full byte of temperature.
                    0b0010_0111, //  39, 0x27 - second full byte of temperature.
                    //  NOTE: This should be 38, 0x26, but is intentionally corrupted
                    //        so that the CRC won't match. Last bit flipped from 0 to 1.
                    0b1100_0110, // 198, 0xc6 - CRC
                ],
            ),
        ];
        let mock_i2c = I2cMock::new(&expectations);
        let mut mock_delay = MockDelay::new();

        // test and verify
        let mut aht20 = AHT20::new(mock_i2c, SENSOR_ADDRESS);
        let mut aht20_init = AHT20Initialized { aht20: &mut aht20 };
        match aht20_init.measure_once(&mut mock_delay) {
            Ok(_) => panic!("CRC is wrong and measure_once should not pass."),
            Err(err_type) => assert_eq!(err_type, Error::InvalidCrc),
        }

        let mock = &mut aht20_init.destroy().aht20.i2c;
        mock.done(); // verify expectations
    }

    /// Test a measurement.
    ///
    /// This uses data from an actual sensor run.
    #[test]
    fn measure() {
        // setup
        let expectations = vec![
            // send_trigger_measurement
            Transaction::write(
                SENSOR_ADDRESS,
                vec![
                    super::Command::TriggerMeasurement as u8,
                    0b0011_0011, // 0x33
                    0b0000_0000, // 0x00
                ],
            ),
            // check_status - with ready bit set to 'ready' (off)
            Transaction::read(SENSOR_ADDRESS, vec![0b0000_1000]),
            // We can now read 7 bytes. status byte, 5 data bytes, crc byte.
            // These are taken from a run of the sensor.
            Transaction::read(
                SENSOR_ADDRESS,
                vec![
                    0b0001_1100, //  28, 0x1c - ready, calibrated, and some mystery flags.
                    //             bit 8 set to 0 is ready. bit 4 set is calibrated. bit 5
                    //             and 3 are described as 'reserved'.
                    0b0110_0101, // 101, 0x65 - first byte of humidity value
                    0b1011_0100, // 180, 0xb4 - second byte of humidity vaue
                    0b0010_0101, //  37, 0x25 - split byte. 4 bits humidity, 4 bits temperature.
                    0b1100_1101, // 205, 0xcd - first full byte of temperature.
                    0b0010_0110, //  38, 0x26 - second full byte of temperature.
                    0b1100_0110, // 198, 0xc6 - CRC
                ],
            ),
        ];
        let mock_i2c = I2cMock::new(&expectations);
        let mut mock_delay = MockDelay::new();

        // test
        let mut aht20 = AHT20::new(mock_i2c, SENSOR_ADDRESS);
        let mut aht20_init = AHT20Initialized { aht20: &mut aht20 };
        let measurement = aht20_init.measure(&mut mock_delay).unwrap();

        // verification
        let mock = &mut aht20_init.destroy().aht20.i2c;
        mock.done(); // verify expectations

        // Temp was 22.52C and humidity 39.61% when above data taken.
        assert!(measurement.temperature > 22.5);
        assert!(measurement.temperature < 22.6);
        assert!(measurement.humidity > 39.6 && measurement.humidity < 39.7);
    }

    /// Test a measurement, without using floating point math.
    ///
    /// This uses data from an actual sensor run.
    #[test]
    fn measure_no_fp() {
        // setup
        let expectations = vec![
            // send_trigger_measurement
            Transaction::write(
                SENSOR_ADDRESS,
                vec![
                    super::Command::TriggerMeasurement as u8,
                    0b0011_0011, // 0x33
                    0b0000_0000, // 0x00
                ],
            ),
            // check_status - with ready bit set to 'ready' (off)
            Transaction::read(SENSOR_ADDRESS, vec![0b0000_1000]),
            // We can now read 7 bytes. status byte, 5 data bytes, crc byte.
            // These are taken from a run of the sensor.
            Transaction::read(
                SENSOR_ADDRESS,
                vec![
                    0b0001_1100, //  28, 0x1c - ready, calibrated, and some mystery flags.
                    //             bit 8 set to 0 is ready. bit 4 set is calibrated. bit 5
                    //             and 3 are described as 'reserved'.
                    0b0110_0101, // 101, 0x65 - first byte of humidity value
                    0b1011_0100, // 180, 0xb4 - second byte of humidity vaue
                    0b0010_0101, //  37, 0x25 - split byte. 4 bits humidity, 4 bits temperature.
                    0b1100_1101, // 205, 0xcd - first full byte of temperature.
                    0b0010_0110, //  38, 0x26 - second full byte of temperature.
                    0b1100_0110, // 198, 0xc6 - CRC
                ],
            ),
        ];
        let mock_i2c = I2cMock::new(&expectations);
        let mut mock_delay = MockDelay::new();

        // test
        let mut aht20 = AHT20::new(mock_i2c, SENSOR_ADDRESS);
        let mut aht20_init = AHT20Initialized { aht20: &mut aht20 };
        let measurement = aht20_init.measure_no_fp(&mut mock_delay).unwrap();

        // verification
        let mock = &mut aht20_init.destroy().aht20.i2c;
        mock.done(); // verify expectations

        // Temp was 22.52C and humidity 39.61% when above data taken.
        // No fp mode will found that to 22.0C and 39.0%.
        println!("temp: {:.2}", measurement.temperature);
        println!("humidity: {:.2}", measurement.humidity);
        assert!(measurement.temperature == 22.0);
        assert!(measurement.humidity == 39.0);
    }

    /// Test a valid CRC invocation.
    /// Test a valid CRC invocation.
    #[test]
    fn crc_correct() {
        // Example from the Interface Specification document.
        assert_eq!(super::compute_crc(&[0xBE, 0xEF]), 0x92);
    }

    /// Test a CRC call that does not match.
    #[test]
    fn crc_wrong() {
        // Changed example from the Interface Specification document. This should not match - the
        // bytes going in are changed from the known good values, but the expected result is the
        // same.
        assert_ne!(super::compute_crc(&[0xFF, 0xFF]), 0x92);
    }
}