1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
use crate::convert::*;
use core::hash::{Hasher};

///Just a simple bit pattern.
const PAD : u128 = 0xF0E1_D2C3_B4A5_9687_7869_5A4B_3C2D_1E0F;

/// A `Hasher` for hashing an arbitrary stream of bytes.
///
/// Instances of [AHasher] represent state that is updated while hashing data.
///
/// Each method updates the internal state based on the new data provided. Once
/// all of the data has been provided, the resulting hash can be obtained by calling
/// `finish()`
///
/// [Clone] is also provided in case you wish to calculate hashes for two different items that
/// start with the same data.
///
#[derive(Debug, Clone)]
pub struct AHasher {
    buffer: [u64; 2],
}

impl AHasher {
    /// Creates a new hasher keyed to the provided keys.
    /// # Example
    ///
    /// ```
    /// use std::hash::Hasher;
    /// use ahash::AHasher;
    ///
    /// let mut hasher = AHasher::new_with_keys(123, 456);
    ///
    /// hasher.write_u32(1989);
    /// hasher.write_u8(11);
    /// hasher.write_u8(9);
    /// hasher.write(b"Huh?");
    ///
    /// println!("Hash is {:x}!", hasher.finish());
    /// ```
    #[inline]
    pub(crate) fn new_with_keys(key0: u64, key1: u64) -> AHasher {
        AHasher { buffer: [key0, key1] }
    }

    #[inline]
    pub(crate) fn new_with_key(key: [u64; 2], loc: usize) -> AHasher {
        AHasher { buffer: [key[0], key[1] ^ (loc as u64)] }
    }
}

#[inline(never)]
#[no_mangle]
fn hash_test_aes(input: &[u8]) -> u64 {
    let mut a = AHasher::new_with_keys(67, 87);
    a.write(input);
    a.finish()
}

/// Provides methods to hash all of the primitive types.
impl Hasher for AHasher {
    #[inline]
    fn write_u8(&mut self, i: u8) {
        self.write_u128(i as u128);
    }

    #[inline]
    fn write_u16(&mut self, i: u16) {
        self.write_u128(i as u128);
    }

    #[inline]
    fn write_u32(&mut self, i: u32) {
        self.write_u128(i as u128);
    }

    #[inline]
    fn write_u128(&mut self, i: u128) {
        self.buffer = aeshash(self.buffer.convert(),i).convert();
    }

    #[inline]
    fn write_usize(&mut self, i: usize) {
        self.write_u64(i as u64);
    }

    #[inline]
    fn write_u64(&mut self, i: u64) {
        self.write_u128(i as u128);
    }

    #[inline]
    fn write(&mut self, input: &[u8]) {
        let mut data = input;
        let length = data.len() as u64;
        //This will be scrambled by the first AES round in any branch.
        self.buffer[1] ^= length;
        //A 'binary search' on sizes reduces the number of comparisons.
        if data.len() > 8 {
            if data.len() > 32 {
                if data.len() > 64 {
                    let mut par_block: u128 = self.buffer.convert();
                    while data.len() > 0 {
                        if data.len() > 64 {
                            //This is very awkward flow control. The else block could be outside of the loop
                            //at the bottom and the loop conditional could be > 64.
                            //But for whatever reason when written this way the compiler can't optimize away
                            //the bound checks if the loop is written that way. This way the compiler
                            //will peel the loop and end up removing the bounds checks.
                            let (b1, rest) = data.read_u128();
                            par_block = aeshash(par_block, b1);
                            data = rest;
                            let (b2, rest) = data.read_u128();
                            self.buffer = aeshash(self.buffer.convert(), b2).convert();
                            data = rest;
                        } else {
                            //This is identical to the 33-64 block below...
                            let (first, second) = data.split_at(data.len() / 2);
                            self.buffer = aeshash(self.buffer.convert(), first.read_u128().0).convert();
                            self.buffer = aeshash(self.buffer.convert(), first.read_last_u128()).convert();
                            self.buffer = aeshash(self.buffer.convert(), second.read_u128().0).convert();
                            self.buffer = aeshash(self.buffer.convert(), second.read_last_u128()).convert();
                            break;
                        }
                    }
                    self.buffer = aeshash(self.buffer.convert(), par_block).convert();
                } else {
                    //len 33-64
                    let (first, second) = data.split_at(data.len() / 2);
                    self.buffer = aeshash(self.buffer.convert(), first.read_u128().0).convert();
                    self.buffer = aeshash(self.buffer.convert(), first.read_last_u128()).convert();
                    self.buffer = aeshash(self.buffer.convert(), second.read_u128().0).convert();
                    self.buffer = aeshash(self.buffer.convert(), second.read_last_u128()).convert();
                }
            } else {
                if data.len() > 16 {
                    //len 17-32
                    self.buffer = aeshash(self.buffer.convert(), data.read_u128().0).convert();
                    self.buffer = aeshash(self.buffer.convert(), data.read_last_u128()).convert();
                } else {
                    //len 9-16
                    self.buffer = aeshash(self.buffer.convert(), data.read_u64().0 as u128).convert();
                    self.buffer = aeshash(self.buffer.convert(), data.read_last_u64() as u128).convert();
                }
            }
        } else {
            if data.len() >= 2 {
                if data.len() >= 4 {
                    //len 4-8
                    self.buffer = aeshash(self.buffer.convert(),data.read_u32().0 as u128).convert();
                    self.buffer = aeshash(self.buffer.convert(),data.read_last_u32() as u128).convert();
                } else {
                    //len 2-3
                    self.buffer = aeshash(self.buffer.convert(),data.read_u16().0 as u128).convert();
                    self.buffer = aeshash(self.buffer.convert(),data[data.len()-1] as u128).convert();
                }
            } else {
                if data.len() > 0 {
                    //len 1
                    self.buffer = aeshash(self.buffer.convert(), data[0] as u128).convert();
                }
            }
        }
    }
    #[inline]
    fn finish(&self) -> u64 {
        let result: [u64; 2] = aeshash(aeshash(self.buffer.convert(), PAD), PAD).convert();
        result[0]//.wrapping_add(result[1])
    }
}

#[cfg(all(any(target_arch = "x86", target_arch = "x86_64"), target_feature = "aes"))]
#[inline(always)]
fn aeshash(value: u128, xor: u128) -> u128 {
    use core::mem::transmute;
    #[cfg(target_arch = "x86")]
    use core::arch::x86::*;
    #[cfg(target_arch = "x86_64")]
    use core::arch::x86_64::*;
    unsafe {
        let value = transmute(value);
        transmute(_mm_aesdec_si128(value, transmute(xor)))
    }
}

#[cfg(test)]
mod tests {
    use std::collections::HashMap;
    use std::hash::{BuildHasherDefault};
    use crate::convert::Convert;
    use crate::aes_hash::*;

    #[test]
    fn test_builder() {
        let mut map = HashMap::<u32, u64, BuildHasherDefault<AHasher>>::default();
        map.insert(1, 3);
    }

    #[test]
    fn test_default() {
        let hasher_a = AHasher::default();
        assert_ne!(0, hasher_a.buffer[0]);
        assert_ne!(0, hasher_a.buffer[1]);
        assert_ne!(hasher_a.buffer[0], hasher_a.buffer[1]);
        let hasher_b = AHasher::default();
        assert_eq!(hasher_a.buffer[0], hasher_b.buffer[0]);
        assert_eq!(hasher_a.buffer[1], hasher_b.buffer[1]);
    }

    #[test]
    fn test_hash() {
        let mut result: [u64; 2] = [0x6c62272e07bb0142, 0x62b821756295c58d];
        let value: [u64; 2] = [1 << 32, 0xFEDCBA9876543210];
        result = aeshash(value.convert(), result.convert()).convert();
        result = aeshash(result.convert(), result.convert()).convert();
        let mut result2: [u64; 2] = [0x6c62272e07bb0142, 0x62b821756295c58d];
        let value2: [u64; 2] = [1, 0xFEDCBA9876543210];
        result2 = aeshash(value2.convert(), result2.convert()).convert();
        result2 = aeshash(result2.convert(), result.convert()).convert();
        let result: [u8; 16] = result.convert();
        let result2: [u8; 16] = result2.convert();
        assert_ne!(hex::encode(result), hex::encode(result2));
    }

    #[test]
    fn test_conversion() {
        let input: &[u8] = "dddddddd".as_bytes();
        let bytes: u64 = as_array!(input, 8).convert();
        assert_eq!(bytes, 0x6464646464646464);
    }
}