1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
//! The core logic of a Raft node.

mod admin;
mod append_entries;
mod client;
mod install_snapshot;
pub(crate) mod replication;
mod vote;

use std::collections::BTreeMap;
use std::sync::Arc;

use futures::future::{AbortHandle, Abortable};
use futures::stream::{FuturesOrdered, StreamExt};
use serde::{Deserialize, Serialize};
use tokio::sync::{broadcast, mpsc, oneshot, watch};
use tokio::task::JoinHandle;
use tokio::time::{sleep_until, Duration, Instant};
use tracing_futures::Instrument;

use crate::config::{Config, SnapshotPolicy};
use crate::core::client::ClientRequestEntry;
use crate::error::{
    ChangeConfigError, ClientReadError, ClientWriteError, InitializeError, RaftError, RaftResult,
};
use crate::metrics::RaftMetrics;
use crate::raft::{
    ChangeMembershipTx, ClientReadResponseTx, ClientWriteRequest, ClientWriteResponseTx, Entry,
    EntryPayload, MembershipConfig, RaftMsg,
};
use crate::replication::{RaftEvent, ReplicaEvent, ReplicationStream};
use crate::storage::HardState;
use crate::{
    AppData, AppDataResponse, CatchUpCancellationPolicy, NodeId, RaftNetwork, RaftStorage,
};
use std::sync::atomic::{AtomicBool, Ordering};

/// The core type implementing the Raft protocol.
pub struct RaftCore<D: AppData, R: AppDataResponse, N: RaftNetwork<D>, S: RaftStorage<D, R>> {
    /// This node's ID.
    id: NodeId,
    /// This node's runtime config.
    config: Arc<Config>,
    /// The cluster's current membership configuration.
    membership: MembershipConfig,
    /// The `RaftNetwork` implementation.
    network: Arc<N>,
    /// The `RaftStorage` implementation.
    storage: Arc<S>,

    /// The target state of the system.
    target_state: State,

    /// The index of the highest log entry known to be committed cluster-wide.
    ///
    /// The definition of a committed log is that the leader which has created the log has
    /// successfully replicated the log to a majority of the cluster. This value is updated via
    /// AppendEntries RPC from the leader, or if a node is the leader, it will update this value
    /// as new entries have been successfully replicated to a majority of the cluster.
    ///
    /// Is initialized to 0, and increases monotonically. This is always based on the leader's
    /// commit index which is communicated to other members via the AppendEntries protocol.
    commit_index: u64,
    /// The index of the highest log entry which has been applied to the local state machine.
    ///
    /// Is initialized to 0 for a pristine node; else, for nodes with existing state it is
    /// is initialized to the value returned from the `RaftStorage::get_initial_state` on startup.
    /// This value increases following the `commit_index` as logs are applied to the state
    /// machine (via the storage interface).
    last_applied: u64,
    /// The current term.
    ///
    /// Is initialized to 0 on first boot, and increases monotonically. This is normally based on
    /// the leader's term which is communicated to other members via the AppendEntries protocol,
    /// but this may also be incremented when a follower becomes a candidate.
    current_term: u64,
    /// The ID of the current leader of the Raft cluster.
    current_leader: Option<NodeId>,
    /// The ID of the candidate which received this node's vote for the current term.
    ///
    /// Each server will vote for at most one candidate in a given term, on a
    /// first-come-first-served basis. See §5.4.1 for additional restriction on votes.
    voted_for: Option<NodeId>,

    /// The index of the last entry to be appended to the log.
    last_log_index: u64,
    /// The term of the last entry to be appended to the log.
    last_log_term: u64,

    /// The node's current snapshot state.
    snapshot_state: Option<SnapshotState<S::Snapshot>>,
    /// The index of the current snapshot, if a snapshot exists.
    ///
    /// This is primarily used in making a determination on when a compaction job needs to be triggered.
    snapshot_index: u64,

    /// A cache of entries which are waiting to be replicated to the state machine.
    ///
    /// It is important to note that this cache must only be populated from the AppendEntries RPC
    /// handler, as these values must only ever represent the entries which have been sent from
    /// the current cluster leader.
    ///
    /// Whenever there is a leadership change, this cache will be cleared.
    entries_cache: BTreeMap<u64, Entry<D>>,
    /// The stream of join handles from state machine replication tasks. There will only ever be
    /// a maximum of 1 element at a time.
    ///
    /// This abstraction is needed to ensure that replicating to the state machine does not block
    /// the AppendEntries RPC flow, and to ensure that we have a smooth transition to becoming
    /// leader without concern over duplicate application of entries to the state machine.
    replicate_to_sm_handle: FuturesOrdered<JoinHandle<anyhow::Result<Option<u64>>>>,
    /// A bool indicating if this system has performed its initial replication of
    /// outstanding entries to the state machine.
    has_completed_initial_replication_to_sm: bool,

    /// The last time a heartbeat was received.
    last_heartbeat: Option<Instant>,
    /// The duration until the next election timeout.
    next_election_timeout: Option<Instant>,

    tx_compaction: mpsc::Sender<SnapshotUpdate>,
    rx_compaction: mpsc::Receiver<SnapshotUpdate>,

    rx_api: mpsc::UnboundedReceiver<RaftMsg<D, R>>,
    tx_metrics: watch::Sender<RaftMetrics>,
    rx_shutdown: oneshot::Receiver<()>,
}

impl<D: AppData, R: AppDataResponse, N: RaftNetwork<D>, S: RaftStorage<D, R>> RaftCore<D, R, N, S> {
    pub(crate) fn spawn(
        id: NodeId,
        config: Arc<Config>,
        network: Arc<N>,
        storage: Arc<S>,
        rx_api: mpsc::UnboundedReceiver<RaftMsg<D, R>>,
        tx_metrics: watch::Sender<RaftMetrics>,
        rx_shutdown: oneshot::Receiver<()>,
    ) -> JoinHandle<RaftResult<()>> {
        let membership = MembershipConfig::new_initial(id); // This is updated from storage in the main loop.
        let (tx_compaction, rx_compaction) = mpsc::channel(1);
        let this = Self {
            id,
            config,
            membership,
            network,
            storage,
            target_state: State::Follower,
            commit_index: 0,
            last_applied: 0,
            current_term: 0,
            current_leader: None,
            voted_for: None,
            last_log_index: 0,
            last_log_term: 0,
            snapshot_state: None,
            snapshot_index: 0,
            entries_cache: Default::default(),
            replicate_to_sm_handle: FuturesOrdered::new(),
            has_completed_initial_replication_to_sm: false,
            last_heartbeat: None,
            next_election_timeout: None,
            tx_compaction,
            rx_compaction,
            rx_api,
            tx_metrics,
            rx_shutdown,
        };
        tokio::spawn(this.main())
    }

    /// The main loop of the Raft protocol.
    #[tracing::instrument(level="trace", skip(self), fields(id=self.id, cluster=%self.config.cluster_name))]
    async fn main(mut self) -> RaftResult<()> {
        tracing::trace!("raft node is initializing");
        let state = self
            .storage
            .get_initial_state()
            .await
            .map_err(|err| self.map_fatal_storage_error(err))?;
        self.last_log_index = state.last_log_index;
        self.last_log_term = state.last_log_term;
        self.current_term = state.hard_state.current_term;
        self.voted_for = state.hard_state.voted_for;
        self.membership = state.membership;
        self.last_applied = state.last_applied_log;
        // NOTE: this is repeated here for clarity. It is unsafe to initialize the node's commit
        // index to any other value. The commit index must be determined by a leader after
        // successfully committing a new log to the cluster.
        self.commit_index = 0;

        // Fetch the most recent snapshot in the system.
        if let Some(snapshot) = self
            .storage
            .get_current_snapshot()
            .await
            .map_err(|err| self.map_fatal_storage_error(err))?
        {
            self.snapshot_index = snapshot.index;
        }

        // Set initial state based on state recovered from disk.
        let is_only_configured_member =
            self.membership.members.len() == 1 && self.membership.contains(&self.id);

        // If this is the only configured member and there is live state, then this is
        // a single-node cluster. Become leader.
        if is_only_configured_member && self.last_log_index != u64::min_value() {
            self.set_target_state(State::Leader);
        }
        // Else if there are other members, that can only mean that state was recovered. Become follower.
        // Here we use a 30 second overhead on the initial next_election_timeout. This is because we need
        // to ensure that restarted nodes don't disrupt a stable cluster by timing out and driving up their
        // term before network communication is established.
        else if !is_only_configured_member {
            self.set_target_state(State::Follower);
            let inst = Instant::now()
                + Duration::from_secs(30)
                + Duration::from_millis(self.config.new_rand_election_timeout());
            self.next_election_timeout = Some(inst);
        }
        // Else, for any other condition, stay non-voter.
        else {
            self.set_target_state(State::NonVoter);
        }

        // This is central loop of the system. The Raft core assumes a few different roles based
        // on cluster state. The Raft core will delegate control to the different state
        // controllers and simply awaits the delegated loop to return, which will only take place
        // if some error has been encountered, or if a state change is required.
        loop {
            match &self.target_state {
                State::Leader => LeaderState::new(&mut self).run().await?,
                State::Candidate => CandidateState::new(&mut self).run().await?,
                State::Follower => FollowerState::new(&mut self).run().await?,
                State::NonVoter => NonVoterState::new(&mut self).run().await?,
                State::Shutdown => {
                    tracing::info!("node has shutdown");
                    return Ok(());
                }
            }
        }
    }

    /// Report a metrics payload on the current state of the Raft node.
    #[tracing::instrument(level = "trace", skip(self))]
    fn report_metrics(&mut self) {
        let res = self.tx_metrics.send(RaftMetrics {
            id: self.id,
            state: self.target_state,
            current_term: self.current_term,
            last_log_index: self.last_log_index,
            last_applied: self.last_applied,
            current_leader: self.current_leader,
            membership_config: self.membership.clone(),
        });
        if let Err(err) = res {
            tracing::error!({error=%err, id=self.id}, "error reporting metrics");
        }
    }

    /// Save the Raft node's current hard state to disk.
    #[tracing::instrument(level = "trace", skip(self))]
    async fn save_hard_state(&mut self) -> RaftResult<()> {
        let hs = HardState {
            current_term: self.current_term,
            voted_for: self.voted_for,
        };
        Ok(self
            .storage
            .save_hard_state(&hs)
            .await
            .map_err(|err| self.map_fatal_storage_error(err))?)
    }

    /// Update core's target state, ensuring all invariants are upheld.
    #[tracing::instrument(level = "trace", skip(self))]
    fn set_target_state(&mut self, target_state: State) {
        if target_state == State::Follower && !self.membership.contains(&self.id) {
            self.target_state = State::NonVoter;
        } else {
            self.target_state = target_state;
        }
    }

    /// Get the next election timeout, generating a new value if not set.
    #[tracing::instrument(level = "trace", skip(self))]
    fn get_next_election_timeout(&mut self) -> Instant {
        match self.next_election_timeout {
            Some(inst) => inst,
            None => {
                let inst =
                    Instant::now() + Duration::from_millis(self.config.new_rand_election_timeout());
                self.next_election_timeout = Some(inst);
                inst
            }
        }
    }

    /// Set a value for the next election timeout.
    ///
    /// If `heartbeat=true`, then also update the value of `last_heartbeat`.
    #[tracing::instrument(level = "trace", skip(self))]
    fn update_next_election_timeout(&mut self, heartbeat: bool) {
        let now = Instant::now();
        self.next_election_timeout =
            Some(now + Duration::from_millis(self.config.new_rand_election_timeout()));
        if heartbeat {
            self.last_heartbeat = Some(now);
        }
    }

    /// Update the value of the `current_leader` property.
    #[tracing::instrument(level = "trace", skip(self))]
    fn update_current_leader(&mut self, update: UpdateCurrentLeader) {
        self.entries_cache.clear();
        match update {
            UpdateCurrentLeader::ThisNode => {
                self.current_leader = Some(self.id);
            }
            UpdateCurrentLeader::OtherNode(target) => {
                self.current_leader = Some(target);
            }
            UpdateCurrentLeader::Unknown => {
                self.current_leader = None;
            }
        }
    }

    /// Encapsulate the process of updating the current term, as updating the `voted_for` state must also be updated.
    #[tracing::instrument(level = "trace", skip(self))]
    fn update_current_term(&mut self, new_term: u64, voted_for: Option<NodeId>) {
        if new_term > self.current_term {
            self.current_term = new_term;
            self.voted_for = voted_for;
        }
    }

    /// Trigger the shutdown sequence due to a non-recoverable error from the storage layer.
    ///
    /// This method assumes that a storage error observed here is non-recoverable. As such, the
    /// Raft node will be instructed to stop. If such behavior is not needed, then don't use this
    /// interface.
    #[tracing::instrument(level = "trace", skip(self))]
    fn map_fatal_storage_error(&mut self, err: anyhow::Error) -> RaftError {
        tracing::error!({error=%err, id=self.id}, "fatal storage error, shutting down");
        self.set_target_state(State::Shutdown);
        RaftError::RaftStorage(err)
    }

    /// Update the node's current membership config & save hard state.
    #[tracing::instrument(level = "trace", skip(self))]
    fn update_membership(&mut self, cfg: MembershipConfig) {
        // If the given config does not contain this node's ID, it means one of the following:
        //
        // - the node is currently a non-voter and is replicating an old config to which it has
        // not yet been added.
        // - the node has been removed from the cluster. The parent application can observe the
        // transition to the non-voter state as a signal for when it is safe to shutdown a node
        // being removed.
        self.membership = cfg;

        if !self.membership.contains(&self.id) {
            self.set_target_state(State::NonVoter);
        } else if self.target_state == State::NonVoter && self.membership.members.contains(&self.id)
        {
            // The node is a NonVoter and the new config has it configured as a normal member.
            // Transition to follower.
            self.set_target_state(State::Follower);
        }
    }

    /// Update the system's snapshot state based on the given data.
    #[tracing::instrument(level = "trace", skip(self))]
    fn update_snapshot_state(&mut self, update: SnapshotUpdate) {
        if let SnapshotUpdate::SnapshotComplete(index) = update {
            self.snapshot_index = index
        }
        // If snapshot state is anything other than streaming, then drop it.
        if let Some(state @ SnapshotState::Streaming { .. }) = self.snapshot_state.take() {
            self.snapshot_state = Some(state)
        }
    }

    /// Trigger a log compaction (snapshot) job if needed.
    #[tracing::instrument(level = "trace", skip(self))]
    pub(self) fn trigger_log_compaction_if_needed(&mut self) {
        if self.snapshot_state.is_some() {
            return;
        }
        let SnapshotPolicy::LogsSinceLast(threshold) = &self.config.snapshot_policy;
        // Check to ensure we have actual entries for compaction.
        if self.last_applied == 0 || self.last_applied < self.snapshot_index {
            return;
        }
        // If we are below the threshold, then there is nothing to do.
        let is_below_threshold = self
            .last_applied
            .checked_sub(self.snapshot_index)
            .map(|diff| diff < *threshold)
            .unwrap_or(false);
        if is_below_threshold {
            return;
        }

        // At this point, we are clear to begin a new compaction process.
        let storage = self.storage.clone();
        let (handle, reg) = AbortHandle::new_pair();
        let (chan_tx, _) = broadcast::channel(1);
        let tx_compaction = self.tx_compaction.clone();
        self.snapshot_state = Some(SnapshotState::Snapshotting {
            handle,
            sender: chan_tx.clone(),
        });
        tokio::spawn(
            async move {
                let res = Abortable::new(storage.do_log_compaction(), reg).await;
                match res {
                    Ok(res) => match res {
                        Ok(snapshot) => {
                            let _ = tx_compaction
                                .try_send(SnapshotUpdate::SnapshotComplete(snapshot.index));
                            let _ = chan_tx.send(snapshot.index); // This will always succeed.
                        }
                        Err(err) => {
                            tracing::error!({error=%err}, "error while generating snapshot");
                            let _ = tx_compaction.try_send(SnapshotUpdate::SnapshotFailed);
                        }
                    },
                    Err(_aborted) => {
                        let _ = tx_compaction.try_send(SnapshotUpdate::SnapshotFailed);
                    }
                }
            }
            .instrument(tracing::debug_span!("beginning new log compaction process")),
        );
    }

    /// Handle the output of an async task replicating entries to the state machine.
    #[tracing::instrument(level = "trace", skip(self, res))]
    pub(self) fn handle_replicate_to_sm_result(
        &mut self,
        res: anyhow::Result<Option<u64>>,
    ) -> RaftResult<()> {
        let last_applied_opt = res.map_err(|err| self.map_fatal_storage_error(err))?;
        if let Some(last_applied) = last_applied_opt {
            self.last_applied = last_applied;
        }
        self.report_metrics();
        self.trigger_log_compaction_if_needed();
        Ok(())
    }

    /// Reject an init config request due to the Raft node being in a state which prohibits the request.
    #[tracing::instrument(level = "trace", skip(self, tx))]
    fn reject_init_with_config(&self, tx: oneshot::Sender<Result<(), InitializeError>>) {
        let _ = tx.send(Err(InitializeError::NotAllowed));
    }

    /// Reject a proposed config change request due to the Raft node being in a state which prohibits the request.
    #[tracing::instrument(level = "trace", skip(self, tx))]
    fn reject_config_change_not_leader(&self, tx: oneshot::Sender<Result<(), ChangeConfigError>>) {
        let _ = tx.send(Err(ChangeConfigError::NodeNotLeader(self.current_leader)));
    }

    /// Forward the given client write request to the leader.
    #[tracing::instrument(level = "trace", skip(self, req, tx))]
    fn forward_client_write_request(
        &self,
        req: ClientWriteRequest<D>,
        tx: ClientWriteResponseTx<D, R>,
    ) {
        match req.entry {
            EntryPayload::Normal(entry) => {
                let _ = tx.send(Err(ClientWriteError::ForwardToLeader(
                    entry.data,
                    self.current_leader,
                )));
            }
            _ => {
                // This is unreachable, and well controlled by the type system, but let's log an
                // error for good measure.
                tracing::error!("unreachable branch hit within agreed, attempting to forward a Raft internal entry");
            }
        }
    }

    /// Forward the given client read request to the leader.
    #[tracing::instrument(level = "trace", skip(self, tx))]
    fn forward_client_read_request(&self, tx: ClientReadResponseTx) {
        let _ = tx.send(Err(ClientReadError::ForwardToLeader(self.current_leader)));
    }
}

/// An enum describing the way the current leader property is to be updated.
#[derive(Debug)]
pub(self) enum UpdateCurrentLeader {
    Unknown,
    OtherNode(NodeId),
    ThisNode,
}

/// The current snapshot state of the Raft node.
pub(self) enum SnapshotState<S> {
    /// The Raft node is compacting itself.
    Snapshotting {
        /// A handle to abort the compaction process early if needed.
        handle: AbortHandle,
        /// A sender for notifiying any other tasks of the completion of this compaction.
        sender: broadcast::Sender<u64>,
    },
    /// The Raft node is streaming in a snapshot from the leader.
    Streaming {
        /// The offset of the last byte written to the snapshot.
        offset: u64,
        /// The ID of the snapshot being written.
        id: String,
        /// A handle to the snapshot writer.
        snapshot: Box<S>,
    },
}

/// An update on a snapshot creation process.
#[derive(Debug)]
pub(self) enum SnapshotUpdate {
    /// Snapshot creation has finished successfully and covers the given index.
    SnapshotComplete(u64),
    /// Snapshot creation failed.
    SnapshotFailed,
}

///////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////

/// All possible states of a Raft node.
#[derive(Clone, Copy, Debug, PartialEq, Eq, Serialize, Deserialize)]
pub enum State {
    /// The node is completely passive; replicating entries, but neither voting nor timing out.
    NonVoter,
    /// The node is replicating logs from the leader.
    Follower,
    /// The node is campaigning to become the cluster leader.
    Candidate,
    /// The node is the Raft cluster leader.
    Leader,
    /// The Raft node is shutting down.
    Shutdown,
}

impl State {
    /// Check if currently in non-voter state.
    pub fn is_non_voter(&self) -> bool {
        matches!(self, Self::NonVoter)
    }

    /// Check if currently in follower state.
    pub fn is_follower(&self) -> bool {
        matches!(self, Self::Follower)
    }

    /// Check if currently in candidate state.
    pub fn is_candidate(&self) -> bool {
        matches!(self, Self::Candidate)
    }

    /// Check if currently in leader state.
    pub fn is_leader(&self) -> bool {
        matches!(self, Self::Leader)
    }
}

///////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////

/// Volatile state specific to the Raft leader.
struct LeaderState<'a, D: AppData, R: AppDataResponse, N: RaftNetwork<D>, S: RaftStorage<D, R>> {
    pub(super) core: &'a mut RaftCore<D, R, N, S>,
    /// A mapping of node IDs the replication state of the target node.
    pub(super) nodes: BTreeMap<NodeId, ReplicationState<D>>,
    /// A mapping of new nodes (non-voters) which are being synced in order to join the cluster.
    pub(super) non_voters: BTreeMap<NodeId, NonVoterReplicationState<D>>,
    /// A bool indicating if this node will be stepping down after committing the current config change.
    pub(super) is_stepping_down: bool,

    /// The stream of events coming from replication streams.
    pub(super) replicationrx: mpsc::UnboundedReceiver<ReplicaEvent<S::Snapshot>>,
    /// The clonable sender channel for replication stream events.
    pub(super) replicationtx: mpsc::UnboundedSender<ReplicaEvent<S::Snapshot>>,
    /// A buffer of client requests which have been appended locally and are awaiting to be committed to the cluster.
    pub(super) awaiting_committed: Vec<ClientRequestEntry<D, R>>,
    /// A field tracking the cluster's current consensus state, which is used for dynamic membership.
    pub(super) consensus_state: ConsensusState,
    /// An optional receiver for when a config change has finished.
    ///
    /// The client requesting the config change holds the receiver end of this channel, waiting
    /// for the change to finish.
    pub(super) config_change_done_cb: Option<oneshot::Sender<Result<(), RaftError>>>,
    /// An optional receiver for when a config change is committed.
    ///
    /// Once this receiver fires, the config change protocol can proceed and finish.
    pub(super) config_change_committed_cb:
        FuturesOrdered<oneshot::Receiver<Result<u64, RaftError>>>,
    /// An optional receiver for when to cancel the catch up process of a
    /// configuration change.
    ///
    /// If this receiver fires, then we should cancel the configuration change, and
    /// go back to `Uniform` state.
    pub(super) cancel_catch_up_cb: FuturesOrdered<oneshot::Receiver<bool>>,
}

impl<'a, D: AppData, R: AppDataResponse, N: RaftNetwork<D>, S: RaftStorage<D, R>>
    LeaderState<'a, D, R, N, S>
{
    /// Create a new instance.
    pub(self) fn new(core: &'a mut RaftCore<D, R, N, S>) -> Self {
        let consensus_state = ConsensusState::Uniform;
        let (replicationtx, replicationrx) = mpsc::unbounded_channel();
        Self {
            core,
            nodes: BTreeMap::new(),
            non_voters: BTreeMap::new(),
            is_stepping_down: false,
            replicationtx,
            replicationrx,
            consensus_state,
            awaiting_committed: Vec::new(),
            config_change_committed_cb: FuturesOrdered::new(),
            config_change_done_cb: None,
            cancel_catch_up_cb: FuturesOrdered::new(),
        }
    }

    /// Transition to the Raft leader state.
    #[tracing::instrument(level="trace", skip(self), fields(id=self.core.id, raft_state="leader"))]
    pub(self) async fn run(mut self) -> RaftResult<()> {
        // Spawn replication streams.
        let targets = self
            .core
            .membership
            .all_nodes()
            .into_iter()
            .filter(|elem| elem != &self.core.id)
            .collect::<Vec<_>>();
        for target in targets {
            let state = self.spawn_replication_stream(target);
            self.nodes.insert(target, state);
        }

        // Setup state as leader.
        self.core.last_heartbeat = None;
        self.core.next_election_timeout = None;
        self.core
            .update_current_leader(UpdateCurrentLeader::ThisNode);
        self.core.report_metrics();

        // Per §8, commit an initial entry as part of becoming the cluster leader.
        self.commit_initial_leader_entry().await?;

        loop {
            if !self.core.target_state.is_leader() {
                for node in self.nodes.values() {
                    let _ = node.replstream.repltx.send(RaftEvent::Terminate);
                }
                for node in self.non_voters.values() {
                    let _ = node.state.replstream.repltx.send(RaftEvent::Terminate);
                }
                return Ok(());
            }
            tokio::select! {
                Some(msg) = self.core.rx_api.recv() => match msg {
                    RaftMsg::AppendEntries{rpc, tx} => {
                        let _ = tx.send(self.core.handle_append_entries_request(rpc).await);
                    }
                    RaftMsg::RequestVote{rpc, tx} => {
                        let _ = tx.send(self.core.handle_vote_request(rpc).await);
                    }
                    RaftMsg::InstallSnapshot{rpc, tx} => {
                        let _ = tx.send(self.core.handle_install_snapshot_request(rpc).await);
                    }
                    RaftMsg::ClientReadRequest{tx} => {
                        self.handle_client_read_request(tx).await;
                    }
                    RaftMsg::ClientWriteRequest{rpc, tx} => {
                        self.handle_client_write_request(rpc, tx).await;
                    }
                    RaftMsg::Initialize{tx, ..} => {
                        self.core.reject_init_with_config(tx);
                    }
                    RaftMsg::AddNonVoter{id, tx} => {
                        self.add_non_voter(id, tx);
                    }
                    RaftMsg::RemoveNonVoter{id, tx} => {
                        self.remove_non_voter(id, tx);
                    }
                    RaftMsg::AddVoter{id, tx} => {
                        self.add_voter(id, tx).await;
                    }
                    RaftMsg::RemoveVoter{id, tx} => {
                        self.remove_voter(id, tx).await;
                    }
                },
                Some(update) = self.core.rx_compaction.recv() => self.core.update_snapshot_state(update),
                Some(Ok(res)) = self.config_change_committed_cb.next() => {
                    match res {
                        Ok(index) => {
                            let final_res = self.handle_config_change_committed(index).await;
                            if let Some(cb) = self.config_change_done_cb.take() {
                                let _ = cb.send(final_res.map_err(From::from));
                            }
                        }
                        Err(err) => if let Some(cb) = self.config_change_done_cb.take() {
                            let _ = cb.send(Err(err));
                        }
                  }
                },
                Some(event) = self.replicationrx.recv() => self.handle_replica_event(event).await,
                Some(Ok(repl_sm_result)) = self.core.replicate_to_sm_handle.next() => {
                    // Errors herein will trigger shutdown, so no need to process error.
                    let _ = self.core.handle_replicate_to_sm_result(repl_sm_result);
                }
                Ok(_) = &mut self.core.rx_shutdown => self.core.set_target_state(State::Shutdown),
                Some(Ok(should_cancel)) = self.cancel_catch_up_cb.next() => {
                    if should_cancel {
                        self.cancel_catch_up_state();
                    }
                }
            }
        }
    }
}

/// A struct tracking the state of a replication stream from the perspective of the Raft actor.
struct ReplicationState<D: AppData> {
    pub match_index: u64,
    pub match_term: u64,
    pub is_at_line_rate: bool,
    pub remove_after_commit: Option<u64>,
    pub replstream: ReplicationStream<D>,
}

/// The same as `ReplicationState`, except for non-voters.
struct NonVoterReplicationState<D: AppData> {
    /// The replication stream state.
    pub state: ReplicationState<D>,
    /// A bool indicating if this non-voters is ready to join the cluster.
    pub is_ready_to_join: bool,
    /// The response channel to use for when this node has successfully synced with the cluster.
    pub tx: Option<oneshot::Sender<Result<(), ChangeConfigError>>>,
}

/// A stateful instantiation of a `CatchUpCancellationPolicy`.
///
/// Used for cancellation-related bookkeeping.
pub enum CatchUpCancellationState {
    Timeout { already_caught_up: Arc<AtomicBool> },
}

impl CatchUpCancellationState {
    fn new(cancel_tx: oneshot::Sender<bool>, policy: &CatchUpCancellationPolicy) -> Self {
        match policy {
            CatchUpCancellationPolicy::Timeout {
                timeout_milliseconds,
            } => {
                let already_caught_up = Arc::new(AtomicBool::new(false));

                let moved_timeout_milliseconds = *timeout_milliseconds;
                let moved_already_caught_up = Arc::clone(&already_caught_up);
                tokio::spawn(async move {
                    tokio::time::sleep(Duration::from_millis(moved_timeout_milliseconds)).await;

                    let should_cancel = !moved_already_caught_up.load(Ordering::Acquire);
                    let _ = cancel_tx.send(should_cancel);
                });

                CatchUpCancellationState::Timeout { already_caught_up }
            }
        }
    }
}

/// The nature of a configuration change.
#[derive(Clone, Copy, PartialEq)]
pub enum ConfigChangeOperation {
    /// A new node is being added to the cluster.
    AddingNode,

    /// An existing node is being removed from the cluster.
    RemovingNode,
}

/// A state enum used by Raft leaders to navigate the consensus protocol.
pub enum ConsensusState {
    /// The cluster consensus is uniform.
    ///
    /// Configuration changes may only be requested in this state.
    Uniform,

    /// The node to be added is not synced yet, and is being brought up to speed.
    ///
    /// Once the node is synced, the config change proceeds automatically to add the node
    /// as a Voter member of the cluster.
    CatchingUp {
        node: NodeId,
        tx: ChangeMembershipTx,
        cancellation_state: CatchUpCancellationState,
    },

    /// A configuration change is in progress.
    ///
    /// At any given time, at most one change is possible. Thus, if a client wishes to
    /// perform additional config changes, it must wait for the current one to finish.
    ConfigChange {
        node: NodeId,
        operation: ConfigChangeOperation,
    },
}

///////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////

/// Volatile state specific to a Raft node in candidate state.
struct CandidateState<'a, D: AppData, R: AppDataResponse, N: RaftNetwork<D>, S: RaftStorage<D, R>> {
    core: &'a mut RaftCore<D, R, N, S>,
    /// The number of votes which have been granted by peer nodes of the config group.
    votes_granted: u64,
    /// The number of votes needed from the config group in order to become the Raft leader.
    votes_needed: u64,
}

impl<'a, D: AppData, R: AppDataResponse, N: RaftNetwork<D>, S: RaftStorage<D, R>>
    CandidateState<'a, D, R, N, S>
{
    pub(self) fn new(core: &'a mut RaftCore<D, R, N, S>) -> Self {
        Self {
            core,
            votes_granted: 0,
            votes_needed: 0,
        }
    }

    /// Run the candidate loop.
    #[tracing::instrument(level="trace", skip(self), fields(id=self.core.id, raft_state="candidate"))]
    pub(self) async fn run(mut self) -> RaftResult<()> {
        // Each iteration of the outer loop represents a new term.
        loop {
            if !self.core.target_state.is_candidate() {
                return Ok(());
            }

            // Setup initial state per term.
            // We must vote for ourselves per the Raft spec.
            self.votes_granted = 1;
            // Just need a majority.
            self.votes_needed = ((self.core.membership.members.len() / 2) + 1) as u64;

            // Setup new term.
            self.core.update_next_election_timeout(false); // Generates a new rand value within range.
            self.core.current_term += 1;
            self.core.voted_for = Some(self.core.id);
            self.core
                .update_current_leader(UpdateCurrentLeader::Unknown);
            self.core.save_hard_state().await?;
            self.core.report_metrics();

            // Send RPCs to all members in parallel.
            let mut pending_votes = self.spawn_parallel_vote_requests();

            // Inner processing loop for this Raft state.
            loop {
                if !self.core.target_state.is_candidate() {
                    return Ok(());
                }
                let timeout_fut = sleep_until(self.core.get_next_election_timeout());
                tokio::select! {
                    _ = timeout_fut => break, // This election has timed-out. Break to outer loop, which starts a new term.
                    Some((res, peer)) = pending_votes.recv() => self.handle_vote_response(res, peer).await?,
                    Some(msg) = self.core.rx_api.recv() => match msg {
                        RaftMsg::AppendEntries{rpc, tx} => {
                            let _ = tx.send(self.core.handle_append_entries_request(rpc).await);
                        }
                        RaftMsg::RequestVote{rpc, tx} => {
                            let _ = tx.send(self.core.handle_vote_request(rpc).await);
                        }
                        RaftMsg::InstallSnapshot{rpc, tx} => {
                            let _ = tx.send(self.core.handle_install_snapshot_request(rpc).await);
                        }
                        RaftMsg::ClientReadRequest{tx} => {
                            self.core.forward_client_read_request(tx);
                        }
                        RaftMsg::ClientWriteRequest{rpc, tx} => {
                            self.core.forward_client_write_request(rpc, tx);
                        }
                        RaftMsg::Initialize{tx, ..} => {
                            self.core.reject_init_with_config(tx);
                        }
                        RaftMsg::AddNonVoter{tx, ..} => {
                            self.core.reject_config_change_not_leader(tx);
                        }
                        RaftMsg::RemoveNonVoter{tx, ..} => {
                            self.core.reject_config_change_not_leader(tx);
                        }
                        RaftMsg::AddVoter{tx, ..} => {
                            self.core.reject_config_change_not_leader(tx);
                        }
                        RaftMsg::RemoveVoter{tx, ..} => {
                            self.core.reject_config_change_not_leader(tx);
                        }
                    },
                    Some(update) = self.core.rx_compaction.recv() => self.core.update_snapshot_state(update),
                    Some(Ok(repl_sm_result)) = self.core.replicate_to_sm_handle.next() => {
                        // Errors herein will trigger shutdown, so no need to process error.
                        let _ = self.core.handle_replicate_to_sm_result(repl_sm_result);
                    }
                    Ok(_) = &mut self.core.rx_shutdown => self.core.set_target_state(State::Shutdown),
                }
            }
        }
    }
}

///////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////

/// Volatile state specific to a Raft node in follower state.
pub struct FollowerState<
    'a,
    D: AppData,
    R: AppDataResponse,
    N: RaftNetwork<D>,
    S: RaftStorage<D, R>,
> {
    core: &'a mut RaftCore<D, R, N, S>,
}

impl<'a, D: AppData, R: AppDataResponse, N: RaftNetwork<D>, S: RaftStorage<D, R>>
    FollowerState<'a, D, R, N, S>
{
    pub(self) fn new(core: &'a mut RaftCore<D, R, N, S>) -> Self {
        Self { core }
    }

    /// Run the follower loop.
    #[tracing::instrument(level="trace", skip(self), fields(id=self.core.id, raft_state="follower"))]
    pub(self) async fn run(self) -> RaftResult<()> {
        self.core.report_metrics();
        loop {
            if !self.core.target_state.is_follower() {
                return Ok(());
            }

            let election_timeout = sleep_until(self.core.get_next_election_timeout()); // Value is updated as heartbeats are received.
            tokio::select! {
                // If an election timeout is hit, then we need to transition to candidate.
                _ = election_timeout => self.core.set_target_state(State::Candidate),
                Some(msg) = self.core.rx_api.recv() => match msg {
                    RaftMsg::AppendEntries{rpc, tx} => {
                        let _ = tx.send(self.core.handle_append_entries_request(rpc).await);
                    }
                    RaftMsg::RequestVote{rpc, tx} => {
                        let _ = tx.send(self.core.handle_vote_request(rpc).await);
                    }
                    RaftMsg::InstallSnapshot{rpc, tx} => {
                        let _ = tx.send(self.core.handle_install_snapshot_request(rpc).await);
                    }
                    RaftMsg::ClientReadRequest{tx} => {
                        self.core.forward_client_read_request(tx);
                    }
                    RaftMsg::ClientWriteRequest{rpc, tx} => {
                        self.core.forward_client_write_request(rpc, tx);
                    }
                    RaftMsg::Initialize{tx, ..} => {
                        self.core.reject_init_with_config(tx);
                    }
                    RaftMsg::AddNonVoter{tx, ..} => {
                        self.core.reject_config_change_not_leader(tx);
                    }
                    RaftMsg::RemoveNonVoter{tx, ..} => {
                        self.core.reject_config_change_not_leader(tx);
                    }
                    RaftMsg::AddVoter{tx, ..} => {
                        self.core.reject_config_change_not_leader(tx);
                    }
                    RaftMsg::RemoveVoter{tx, ..} => {
                        self.core.reject_config_change_not_leader(tx);
                    }
                },
                Some(update) = self.core.rx_compaction.recv() => self.core.update_snapshot_state(update),
                Some(Ok(repl_sm_result)) = self.core.replicate_to_sm_handle.next() => {
                    // Errors herein will trigger shutdown, so no need to process error.
                    let _ = self.core.handle_replicate_to_sm_result(repl_sm_result);
                }
                Ok(_) = &mut self.core.rx_shutdown => self.core.set_target_state(State::Shutdown),
            }
        }
    }
}

///////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////

/// Volatile state specific to a Raft node in non-voter state.
pub struct NonVoterState<
    'a,
    D: AppData,
    R: AppDataResponse,
    N: RaftNetwork<D>,
    S: RaftStorage<D, R>,
> {
    core: &'a mut RaftCore<D, R, N, S>,
}

impl<'a, D: AppData, R: AppDataResponse, N: RaftNetwork<D>, S: RaftStorage<D, R>>
    NonVoterState<'a, D, R, N, S>
{
    pub(self) fn new(core: &'a mut RaftCore<D, R, N, S>) -> Self {
        Self { core }
    }

    /// Run the non-voter loop.
    #[tracing::instrument(level="trace", skip(self), fields(id=self.core.id, raft_state="non-voter"))]
    pub(self) async fn run(mut self) -> RaftResult<()> {
        self.core.report_metrics();
        loop {
            if !self.core.target_state.is_non_voter() {
                return Ok(());
            }
            tokio::select! {
                Some(msg) = self.core.rx_api.recv() => match msg {
                    RaftMsg::AppendEntries{rpc, tx} => {
                        let _ = tx.send(self.core.handle_append_entries_request(rpc).await);
                    }
                    RaftMsg::RequestVote{rpc, tx} => {
                        let _ = tx.send(self.core.handle_vote_request(rpc).await);
                    }
                    RaftMsg::InstallSnapshot{rpc, tx} => {
                        let _ = tx.send(self.core.handle_install_snapshot_request(rpc).await);
                    }
                    RaftMsg::ClientReadRequest{tx} => {
                        self.core.forward_client_read_request(tx);
                    }
                    RaftMsg::ClientWriteRequest{rpc, tx} => {
                        self.core.forward_client_write_request(rpc, tx);
                    }
                    RaftMsg::Initialize{members, tx} => {
                        let _ = tx.send(self.handle_init_with_config(members).await);
                    }
                    RaftMsg::AddNonVoter{tx, ..} => {
                        self.core.reject_config_change_not_leader(tx);
                    }
                    RaftMsg::RemoveNonVoter{tx, ..} => {
                        self.core.reject_config_change_not_leader(tx);
                    }
                    RaftMsg::AddVoter{tx, ..} => {
                        self.core.reject_config_change_not_leader(tx);
                    }
                    RaftMsg::RemoveVoter{tx, ..} => {
                        self.core.reject_config_change_not_leader(tx);
                    }
                },
                Some(update) = self.core.rx_compaction.recv() => self.core.update_snapshot_state(update),
                Some(Ok(repl_sm_result)) = self.core.replicate_to_sm_handle.next() => {
                    // Errors herein will trigger shutdown, so no need to process error.
                    let _ = self.core.handle_replicate_to_sm_result(repl_sm_result);
                }
                Ok(_) = &mut self.core.rx_shutdown => self.core.set_target_state(State::Shutdown),
            }
        }
    }
}