1.0.0[][src]Trait af_lib::prelude::af_core::test::prelude::Sub

#[lang = "sub"]pub trait Sub<Rhs = Self> {
    type Output;
#[must_use]    pub fn sub(self, rhs: Rhs) -> Self::Output;
}

The subtraction operator -.

Note that Rhs is Self by default, but this is not mandatory. For example, std::time::SystemTime implements Sub<Duration>, which permits operations of the form SystemTime = SystemTime - Duration.

Examples

Subtractable points

use std::ops::Sub;

#[derive(Debug, Copy, Clone, PartialEq)]
struct Point {
    x: i32,
    y: i32,
}

impl Sub for Point {
    type Output = Self;

    fn sub(self, other: Self) -> Self::Output {
        Self {
            x: self.x - other.x,
            y: self.y - other.y,
        }
    }
}

assert_eq!(Point { x: 3, y: 3 } - Point { x: 2, y: 3 },
           Point { x: 1, y: 0 });

Implementing Sub with generics

Here is an example of the same Point struct implementing the Sub trait using generics.

use std::ops::Sub;

#[derive(Debug, PartialEq)]
struct Point<T> {
    x: T,
    y: T,
}

// Notice that the implementation uses the associated type `Output`.
impl<T: Sub<Output = T>> Sub for Point<T> {
    type Output = Self;

    fn sub(self, other: Self) -> Self::Output {
        Point {
            x: self.x - other.x,
            y: self.y - other.y,
        }
    }
}

assert_eq!(Point { x: 2, y: 3 } - Point { x: 1, y: 0 },
           Point { x: 1, y: 3 });

Associated Types

type Output[src]

The resulting type after applying the - operator.

Loading content...

Required methods

#[must_use]pub fn sub(self, rhs: Rhs) -> Self::Output[src]

Performs the - operation.

Example

assert_eq!(12 - 1, 11);
Loading content...

Implementations on Foreign Types

impl Sub<Instant> for Instant[src]

type Output = Duration

impl Sub<Duration> for Instant[src]

type Output = Instant

impl Sub<Duration> for SystemTime[src]

type Output = SystemTime

impl<'_, '_, T, S> Sub<&'_ HashSet<T, S>> for &'_ HashSet<T, S> where
    T: Eq + Hash + Clone,
    S: BuildHasher + Default
[src]

type Output = HashSet<T, S>

pub fn sub(self, rhs: &HashSet<T, S>) -> HashSet<T, S>[src]

Returns the difference of self and rhs as a new HashSet<T, S>.

Examples

use std::collections::HashSet;

let a: HashSet<_> = vec![1, 2, 3].into_iter().collect();
let b: HashSet<_> = vec![3, 4, 5].into_iter().collect();

let set = &a - &b;

let mut i = 0;
let expected = [1, 2];
for x in &set {
    assert!(expected.contains(x));
    i += 1;
}
assert_eq!(i, expected.len());

impl<'a> Sub<i32> for &'a i32[src]

type Output = <i32 as Sub<i32>>::Output

impl<'a> Sub<Wrapping<i16>> for &'a Wrapping<i16>[src]

type Output = <Wrapping<i16> as Sub<Wrapping<i16>>>::Output

impl Sub<f64> for f64[src]

type Output = f64

impl<'_> Sub<&'_ u16> for u16[src]

type Output = <u16 as Sub<u16>>::Output

impl<'_> Sub<&'_ u64> for u64[src]

type Output = <u64 as Sub<u64>>::Output

impl Sub<Wrapping<i32>> for Wrapping<i32>[src]

type Output = Wrapping<i32>

impl<'_> Sub<&'_ Wrapping<i128>> for Wrapping<i128>[src]

type Output = <Wrapping<i128> as Sub<Wrapping<i128>>>::Output

impl<'_, '_> Sub<&'_ u64> for &'_ u64[src]

type Output = <u64 as Sub<u64>>::Output

impl<'_, '_> Sub<&'_ i128> for &'_ i128[src]

type Output = <i128 as Sub<i128>>::Output

impl<'_> Sub<&'_ i128> for i128[src]

type Output = <i128 as Sub<i128>>::Output

impl<'_, '_> Sub<&'_ Wrapping<i32>> for &'_ Wrapping<i32>[src]

type Output = <Wrapping<i32> as Sub<Wrapping<i32>>>::Output

impl<'_> Sub<&'_ Wrapping<i64>> for Wrapping<i64>[src]

type Output = <Wrapping<i64> as Sub<Wrapping<i64>>>::Output

impl<'_, '_> Sub<&'_ Wrapping<u16>> for &'_ Wrapping<u16>[src]

type Output = <Wrapping<u16> as Sub<Wrapping<u16>>>::Output

impl<'_, '_> Sub<&'_ isize> for &'_ isize[src]

type Output = <isize as Sub<isize>>::Output

impl<'_> Sub<&'_ Wrapping<u32>> for Wrapping<u32>[src]

type Output = <Wrapping<u32> as Sub<Wrapping<u32>>>::Output

impl<'a> Sub<Wrapping<u16>> for &'a Wrapping<u16>[src]

type Output = <Wrapping<u16> as Sub<Wrapping<u16>>>::Output

impl Sub<Wrapping<usize>> for Wrapping<usize>[src]

type Output = Wrapping<usize>

impl<'_> Sub<&'_ usize> for usize[src]

type Output = <usize as Sub<usize>>::Output

impl<'_> Sub<&'_ isize> for isize[src]

type Output = <isize as Sub<isize>>::Output

impl Sub<u16> for u16[src]

type Output = u16

impl Sub<u32> for u32[src]

type Output = u32

impl<'_> Sub<&'_ i8> for i8[src]

type Output = <i8 as Sub<i8>>::Output

impl<'_, '_> Sub<&'_ f32> for &'_ f32[src]

type Output = <f32 as Sub<f32>>::Output

impl<'a> Sub<u64> for &'a u64[src]

type Output = <u64 as Sub<u64>>::Output

impl Sub<i64> for i64[src]

type Output = i64

impl<'_> Sub<&'_ f64> for f64[src]

type Output = <f64 as Sub<f64>>::Output

impl<'_, '_> Sub<&'_ Wrapping<isize>> for &'_ Wrapping<isize>[src]

type Output = <Wrapping<isize> as Sub<Wrapping<isize>>>::Output

impl Sub<u8> for u8[src]

type Output = u8

impl Sub<f32> for f32[src]

type Output = f32

impl Sub<i16> for i16[src]

type Output = i16

impl<'_, '_> Sub<&'_ f64> for &'_ f64[src]

type Output = <f64 as Sub<f64>>::Output

impl Sub<i8> for i8[src]

type Output = i8

impl Sub<Wrapping<i8>> for Wrapping<i8>[src]

type Output = Wrapping<i8>

impl Sub<Wrapping<u32>> for Wrapping<u32>[src]

type Output = Wrapping<u32>

impl Sub<Wrapping<u128>> for Wrapping<u128>[src]

type Output = Wrapping<u128>

impl<'a> Sub<Wrapping<i32>> for &'a Wrapping<i32>[src]

type Output = <Wrapping<i32> as Sub<Wrapping<i32>>>::Output

impl<'a> Sub<u32> for &'a u32[src]

type Output = <u32 as Sub<u32>>::Output

impl<'_, '_> Sub<&'_ u16> for &'_ u16[src]

type Output = <u16 as Sub<u16>>::Output

impl Sub<u128> for u128[src]

type Output = u128

impl Sub<Wrapping<i64>> for Wrapping<i64>[src]

type Output = Wrapping<i64>

impl<'a> Sub<Wrapping<isize>> for &'a Wrapping<isize>[src]

type Output = <Wrapping<isize> as Sub<Wrapping<isize>>>::Output

impl<'a> Sub<u16> for &'a u16[src]

type Output = <u16 as Sub<u16>>::Output

impl Sub<Wrapping<isize>> for Wrapping<isize>[src]

type Output = Wrapping<isize>

impl<'_> Sub<&'_ u32> for u32[src]

type Output = <u32 as Sub<u32>>::Output

impl<'_, '_> Sub<&'_ i8> for &'_ i8[src]

type Output = <i8 as Sub<i8>>::Output

impl<'_, '_> Sub<&'_ Wrapping<i16>> for &'_ Wrapping<i16>[src]

type Output = <Wrapping<i16> as Sub<Wrapping<i16>>>::Output

impl<'a> Sub<Wrapping<u128>> for &'a Wrapping<u128>[src]

type Output = <Wrapping<u128> as Sub<Wrapping<u128>>>::Output

impl<'a> Sub<Wrapping<i128>> for &'a Wrapping<i128>[src]

type Output = <Wrapping<i128> as Sub<Wrapping<i128>>>::Output

impl<'_, '_> Sub<&'_ Wrapping<u64>> for &'_ Wrapping<u64>[src]

type Output = <Wrapping<u64> as Sub<Wrapping<u64>>>::Output

impl Sub<Wrapping<i128>> for Wrapping<i128>[src]

type Output = Wrapping<i128>

impl<'_, '_> Sub<&'_ u128> for &'_ u128[src]

type Output = <u128 as Sub<u128>>::Output

impl<'_> Sub<&'_ Wrapping<u64>> for Wrapping<u64>[src]

type Output = <Wrapping<u64> as Sub<Wrapping<u64>>>::Output

impl<'_> Sub<&'_ Wrapping<i8>> for Wrapping<i8>[src]

type Output = <Wrapping<i8> as Sub<Wrapping<i8>>>::Output

impl<'_, '_> Sub<&'_ i16> for &'_ i16[src]

type Output = <i16 as Sub<i16>>::Output

impl<'_> Sub<&'_ u128> for u128[src]

type Output = <u128 as Sub<u128>>::Output

impl Sub<Wrapping<i16>> for Wrapping<i16>[src]

type Output = Wrapping<i16>

impl<'_, '_> Sub<&'_ u32> for &'_ u32[src]

type Output = <u32 as Sub<u32>>::Output

impl<'a> Sub<Wrapping<i64>> for &'a Wrapping<i64>[src]

type Output = <Wrapping<i64> as Sub<Wrapping<i64>>>::Output

impl<'_> Sub<&'_ i16> for i16[src]

type Output = <i16 as Sub<i16>>::Output

impl<'_> Sub<&'_ Wrapping<i16>> for Wrapping<i16>[src]

type Output = <Wrapping<i16> as Sub<Wrapping<i16>>>::Output

impl<'_> Sub<&'_ Wrapping<usize>> for Wrapping<usize>[src]

type Output = <Wrapping<usize> as Sub<Wrapping<usize>>>::Output

impl Sub<usize> for usize[src]

type Output = usize

impl<'a> Sub<i16> for &'a i16[src]

type Output = <i16 as Sub<i16>>::Output

impl<'a> Sub<u128> for &'a u128[src]

type Output = <u128 as Sub<u128>>::Output

impl<'_> Sub<&'_ f32> for f32[src]

type Output = <f32 as Sub<f32>>::Output

impl<'_, '_> Sub<&'_ usize> for &'_ usize[src]

type Output = <usize as Sub<usize>>::Output

impl Sub<Wrapping<u16>> for Wrapping<u16>[src]

type Output = Wrapping<u16>

impl<'a> Sub<i64> for &'a i64[src]

type Output = <i64 as Sub<i64>>::Output

impl<'_, '_> Sub<&'_ Wrapping<u8>> for &'_ Wrapping<u8>[src]

type Output = <Wrapping<u8> as Sub<Wrapping<u8>>>::Output

impl<'_> Sub<&'_ Wrapping<isize>> for Wrapping<isize>[src]

type Output = <Wrapping<isize> as Sub<Wrapping<isize>>>::Output

impl<'a> Sub<Wrapping<u8>> for &'a Wrapping<u8>[src]

type Output = <Wrapping<u8> as Sub<Wrapping<u8>>>::Output

impl<'a> Sub<Wrapping<u32>> for &'a Wrapping<u32>[src]

type Output = <Wrapping<u32> as Sub<Wrapping<u32>>>::Output

impl<'_> Sub<&'_ u8> for u8[src]

type Output = <u8 as Sub<u8>>::Output

impl Sub<i128> for i128[src]

type Output = i128

impl<'a> Sub<usize> for &'a usize[src]

type Output = <usize as Sub<usize>>::Output

impl<'_> Sub<&'_ i32> for i32[src]

type Output = <i32 as Sub<i32>>::Output

impl<'a> Sub<f32> for &'a f32[src]

type Output = <f32 as Sub<f32>>::Output

impl<'_, '_> Sub<&'_ Wrapping<usize>> for &'_ Wrapping<usize>[src]

type Output = <Wrapping<usize> as Sub<Wrapping<usize>>>::Output

impl<'a> Sub<Wrapping<i8>> for &'a Wrapping<i8>[src]

type Output = <Wrapping<i8> as Sub<Wrapping<i8>>>::Output

impl<'a> Sub<i8> for &'a i8[src]

type Output = <i8 as Sub<i8>>::Output

impl<'a> Sub<Wrapping<usize>> for &'a Wrapping<usize>[src]

type Output = <Wrapping<usize> as Sub<Wrapping<usize>>>::Output

impl<'a> Sub<Wrapping<u64>> for &'a Wrapping<u64>[src]

type Output = <Wrapping<u64> as Sub<Wrapping<u64>>>::Output

impl<'_, '_> Sub<&'_ i64> for &'_ i64[src]

type Output = <i64 as Sub<i64>>::Output

impl<'_> Sub<&'_ i64> for i64[src]

type Output = <i64 as Sub<i64>>::Output

impl<'_> Sub<&'_ Wrapping<i32>> for Wrapping<i32>[src]

type Output = <Wrapping<i32> as Sub<Wrapping<i32>>>::Output

impl<'a> Sub<isize> for &'a isize[src]

type Output = <isize as Sub<isize>>::Output

impl Sub<Duration> for Duration[src]

type Output = Duration

impl Sub<i32> for i32[src]

type Output = i32

impl Sub<u64> for u64[src]

type Output = u64

impl<'_> Sub<&'_ Wrapping<u16>> for Wrapping<u16>[src]

type Output = <Wrapping<u16> as Sub<Wrapping<u16>>>::Output

impl<'_, '_> Sub<&'_ Wrapping<u32>> for &'_ Wrapping<u32>[src]

type Output = <Wrapping<u32> as Sub<Wrapping<u32>>>::Output

impl<'a> Sub<f64> for &'a f64[src]

type Output = <f64 as Sub<f64>>::Output

impl<'_, '_> Sub<&'_ Wrapping<u128>> for &'_ Wrapping<u128>[src]

type Output = <Wrapping<u128> as Sub<Wrapping<u128>>>::Output

impl<'_, '_> Sub<&'_ Wrapping<i128>> for &'_ Wrapping<i128>[src]

type Output = <Wrapping<i128> as Sub<Wrapping<i128>>>::Output

impl Sub<Wrapping<u8>> for Wrapping<u8>[src]

type Output = Wrapping<u8>

impl<'_, '_> Sub<&'_ i32> for &'_ i32[src]

type Output = <i32 as Sub<i32>>::Output

impl<'_, '_> Sub<&'_ u8> for &'_ u8[src]

type Output = <u8 as Sub<u8>>::Output

impl Sub<isize> for isize[src]

type Output = isize

impl<'a> Sub<i128> for &'a i128[src]

type Output = <i128 as Sub<i128>>::Output

impl Sub<Wrapping<u64>> for Wrapping<u64>[src]

type Output = Wrapping<u64>

impl<'_> Sub<&'_ Wrapping<u128>> for Wrapping<u128>[src]

type Output = <Wrapping<u128> as Sub<Wrapping<u128>>>::Output

impl<'_, '_> Sub<&'_ Wrapping<i64>> for &'_ Wrapping<i64>[src]

type Output = <Wrapping<i64> as Sub<Wrapping<i64>>>::Output

impl<'_, '_> Sub<&'_ Wrapping<i8>> for &'_ Wrapping<i8>[src]

type Output = <Wrapping<i8> as Sub<Wrapping<i8>>>::Output

impl<'a> Sub<u8> for &'a u8[src]

type Output = <u8 as Sub<u8>>::Output

impl<'_> Sub<&'_ Wrapping<u8>> for Wrapping<u8>[src]

type Output = <Wrapping<u8> as Sub<Wrapping<u8>>>::Output

impl<'_, '_, T> Sub<&'_ BTreeSet<T>> for &'_ BTreeSet<T> where
    T: Clone + Ord
[src]

type Output = BTreeSet<T>

pub fn sub(self, rhs: &BTreeSet<T>) -> BTreeSet<T>[src]

Returns the difference of self and rhs as a new BTreeSet<T>.

Examples

use std::collections::BTreeSet;

let a: BTreeSet<_> = vec![1, 2, 3].into_iter().collect();
let b: BTreeSet<_> = vec![3, 4, 5].into_iter().collect();

let result = &a - &b;
let result_vec: Vec<_> = result.into_iter().collect();
assert_eq!(result_vec, [1, 2]);

impl<Tz> Sub<Date<Tz>> for Date<Tz> where
    Tz: TimeZone
[src]

type Output = Duration

impl<Tz> Sub<FixedOffset> for DateTime<Tz> where
    Tz: TimeZone
[src]

type Output = DateTime<Tz>

impl<Tz> Sub<DateTime<Tz>> for DateTime<Tz> where
    Tz: TimeZone
[src]

type Output = Duration

impl Sub<Duration> for NaiveDate[src]

A subtraction of Duration from NaiveDate discards the fractional days, rounding to the closest integral number of days towards Duration::zero(). It is the same as the addition with a negated Duration.

Panics on underflow or overflow. Use NaiveDate::checked_sub_signed to detect that.

Example

use chrono::{Duration, NaiveDate};

let from_ymd = NaiveDate::from_ymd;

assert_eq!(from_ymd(2014, 1, 1) - Duration::zero(),             from_ymd(2014, 1, 1));
assert_eq!(from_ymd(2014, 1, 1) - Duration::seconds(86399),     from_ymd(2014, 1, 1));
assert_eq!(from_ymd(2014, 1, 1) - Duration::seconds(-86399),    from_ymd(2014, 1, 1));
assert_eq!(from_ymd(2014, 1, 1) - Duration::days(1),            from_ymd(2013, 12, 31));
assert_eq!(from_ymd(2014, 1, 1) - Duration::days(-1),           from_ymd(2014, 1, 2));
assert_eq!(from_ymd(2014, 1, 1) - Duration::days(364),          from_ymd(2013, 1, 2));
assert_eq!(from_ymd(2014, 1, 1) - Duration::days(365*4 + 1),    from_ymd(2010, 1, 1));
assert_eq!(from_ymd(2014, 1, 1) - Duration::days(365*400 + 97), from_ymd(1614, 1, 1));

type Output = NaiveDate

impl Sub<FixedOffset> for NaiveDateTime[src]

impl<Tz> Sub<Duration> for Date<Tz> where
    Tz: TimeZone
[src]

type Output = Date<Tz>

impl Sub<NaiveDateTime> for NaiveDateTime[src]

Subtracts another NaiveDateTime from the current date and time. This does not overflow or underflow at all.

As a part of Chrono's leap second handling, the subtraction assumes that there is no leap second ever, except when any of the NaiveDateTimes themselves represents a leap second in which case the assumption becomes that there are exactly one (or two) leap second(s) ever.

The implementation is a wrapper around NaiveDateTime::signed_duration_since.

Example

use chrono::{Duration, NaiveDate};

let from_ymd = NaiveDate::from_ymd;

let d = from_ymd(2016, 7, 8);
assert_eq!(d.and_hms(3, 5, 7) - d.and_hms(2, 4, 6), Duration::seconds(3600 + 60 + 1));

// July 8 is 190th day in the year 2016
let d0 = from_ymd(2016, 1, 1);
assert_eq!(d.and_hms_milli(0, 7, 6, 500) - d0.and_hms(0, 0, 0),
           Duration::seconds(189 * 86_400 + 7 * 60 + 6) + Duration::milliseconds(500));

Leap seconds are handled, but the subtraction assumes that there were no other leap seconds happened.

let leap = from_ymd(2015, 6, 30).and_hms_milli(23, 59, 59, 1_500);
assert_eq!(leap - from_ymd(2015, 6, 30).and_hms(23, 0, 0),
           Duration::seconds(3600) + Duration::milliseconds(500));
assert_eq!(from_ymd(2015, 7, 1).and_hms(1, 0, 0) - leap,
           Duration::seconds(3600) - Duration::milliseconds(500));

type Output = Duration

impl Sub<Duration> for NaiveDateTime[src]

A subtraction of Duration from NaiveDateTime yields another NaiveDateTime. It is the same as the addition with a negated Duration.

As a part of Chrono's leap second handling, the addition assumes that there is no leap second ever, except when the NaiveDateTime itself represents a leap second in which case the assumption becomes that there is exactly a single leap second ever.

Panics on underflow or overflow. Use NaiveDateTime::checked_sub_signed to detect that.

Example

use chrono::{Duration, NaiveDate};

let from_ymd = NaiveDate::from_ymd;

let d = from_ymd(2016, 7, 8);
let hms = |h, m, s| d.and_hms(h, m, s);
assert_eq!(hms(3, 5, 7) - Duration::zero(),             hms(3, 5, 7));
assert_eq!(hms(3, 5, 7) - Duration::seconds(1),         hms(3, 5, 6));
assert_eq!(hms(3, 5, 7) - Duration::seconds(-1),        hms(3, 5, 8));
assert_eq!(hms(3, 5, 7) - Duration::seconds(3600 + 60), hms(2, 4, 7));
assert_eq!(hms(3, 5, 7) - Duration::seconds(86_400),
           from_ymd(2016, 7, 7).and_hms(3, 5, 7));
assert_eq!(hms(3, 5, 7) - Duration::days(365),
           from_ymd(2015, 7, 9).and_hms(3, 5, 7));

let hmsm = |h, m, s, milli| d.and_hms_milli(h, m, s, milli);
assert_eq!(hmsm(3, 5, 7, 450) - Duration::milliseconds(670), hmsm(3, 5, 6, 780));

Leap seconds are handled, but the subtraction assumes that it is the only leap second happened.

let leap = hmsm(3, 5, 59, 1_300);
assert_eq!(leap - Duration::zero(),            hmsm(3, 5, 59, 1_300));
assert_eq!(leap - Duration::milliseconds(200), hmsm(3, 5, 59, 1_100));
assert_eq!(leap - Duration::milliseconds(500), hmsm(3, 5, 59, 800));
assert_eq!(leap - Duration::seconds(60),       hmsm(3, 5, 0, 300));
assert_eq!(leap - Duration::days(1),
           from_ymd(2016, 7, 7).and_hms_milli(3, 6, 0, 300));

type Output = NaiveDateTime

impl Sub<FixedOffset> for NaiveTime[src]

type Output = NaiveTime

impl Sub<Duration> for NaiveTime[src]

A subtraction of Duration from NaiveTime wraps around and never overflows or underflows. In particular the addition ignores integral number of days. It is the same as the addition with a negated Duration.

As a part of Chrono's leap second handling, the addition assumes that there is no leap second ever, except when the NaiveTime itself represents a leap second in which case the assumption becomes that there is exactly a single leap second ever.

Example

use chrono::{Duration, NaiveTime};

let from_hmsm = NaiveTime::from_hms_milli;

assert_eq!(from_hmsm(3, 5, 7, 0) - Duration::zero(),                  from_hmsm(3, 5, 7, 0));
assert_eq!(from_hmsm(3, 5, 7, 0) - Duration::seconds(1),              from_hmsm(3, 5, 6, 0));
assert_eq!(from_hmsm(3, 5, 7, 0) - Duration::seconds(60 + 5),         from_hmsm(3, 4, 2, 0));
assert_eq!(from_hmsm(3, 5, 7, 0) - Duration::seconds(2*60*60 + 6*60), from_hmsm(0, 59, 7, 0));
assert_eq!(from_hmsm(3, 5, 7, 0) - Duration::milliseconds(80),        from_hmsm(3, 5, 6, 920));
assert_eq!(from_hmsm(3, 5, 7, 950) - Duration::milliseconds(280),     from_hmsm(3, 5, 7, 670));

The subtraction wraps around.

assert_eq!(from_hmsm(3, 5, 7, 0) - Duration::seconds(8*60*60), from_hmsm(19, 5, 7, 0));
assert_eq!(from_hmsm(3, 5, 7, 0) - Duration::days(800),        from_hmsm(3, 5, 7, 0));

Leap seconds are handled, but the subtraction assumes that it is the only leap second happened.

let leap = from_hmsm(3, 5, 59, 1_300);
assert_eq!(leap - Duration::zero(),            from_hmsm(3, 5, 59, 1_300));
assert_eq!(leap - Duration::milliseconds(200), from_hmsm(3, 5, 59, 1_100));
assert_eq!(leap - Duration::milliseconds(500), from_hmsm(3, 5, 59, 800));
assert_eq!(leap - Duration::seconds(60),       from_hmsm(3, 5, 0, 300));
assert_eq!(leap - Duration::days(1),           from_hmsm(3, 6, 0, 300));

type Output = NaiveTime

impl Sub<NaiveDate> for NaiveDate[src]

Subtracts another NaiveDate from the current date. Returns a Duration of integral numbers.

This does not overflow or underflow at all, as all possible output fits in the range of Duration.

The implementation is a wrapper around NaiveDate::signed_duration_since.

Example

use chrono::{Duration, NaiveDate};

let from_ymd = NaiveDate::from_ymd;

assert_eq!(from_ymd(2014, 1, 1) - from_ymd(2014, 1, 1), Duration::zero());
assert_eq!(from_ymd(2014, 1, 1) - from_ymd(2013, 12, 31), Duration::days(1));
assert_eq!(from_ymd(2014, 1, 1) - from_ymd(2014, 1, 2), Duration::days(-1));
assert_eq!(from_ymd(2014, 1, 1) - from_ymd(2013, 9, 23), Duration::days(100));
assert_eq!(from_ymd(2014, 1, 1) - from_ymd(2013, 1, 1), Duration::days(365));
assert_eq!(from_ymd(2014, 1, 1) - from_ymd(2010, 1, 1), Duration::days(365*4 + 1));
assert_eq!(from_ymd(2014, 1, 1) - from_ymd(1614, 1, 1), Duration::days(365*400 + 97));

type Output = Duration

impl Sub<NaiveTime> for NaiveTime[src]

Subtracts another NaiveTime from the current time. Returns a Duration within +/- 1 day. This does not overflow or underflow at all.

As a part of Chrono's leap second handling, the subtraction assumes that there is no leap second ever, except when any of the NaiveTimes themselves represents a leap second in which case the assumption becomes that there are exactly one (or two) leap second(s) ever.

The implementation is a wrapper around NaiveTime::signed_duration_since.

Example

use chrono::{Duration, NaiveTime};

let from_hmsm = NaiveTime::from_hms_milli;

assert_eq!(from_hmsm(3, 5, 7, 900) - from_hmsm(3, 5, 7, 900), Duration::zero());
assert_eq!(from_hmsm(3, 5, 7, 900) - from_hmsm(3, 5, 7, 875), Duration::milliseconds(25));
assert_eq!(from_hmsm(3, 5, 7, 900) - from_hmsm(3, 5, 6, 925), Duration::milliseconds(975));
assert_eq!(from_hmsm(3, 5, 7, 900) - from_hmsm(3, 5, 0, 900), Duration::seconds(7));
assert_eq!(from_hmsm(3, 5, 7, 900) - from_hmsm(3, 0, 7, 900), Duration::seconds(5 * 60));
assert_eq!(from_hmsm(3, 5, 7, 900) - from_hmsm(0, 5, 7, 900), Duration::seconds(3 * 3600));
assert_eq!(from_hmsm(3, 5, 7, 900) - from_hmsm(4, 5, 7, 900), Duration::seconds(-3600));
assert_eq!(from_hmsm(3, 5, 7, 900) - from_hmsm(2, 4, 6, 800),
           Duration::seconds(3600 + 60 + 1) + Duration::milliseconds(100));

Leap seconds are handled, but the subtraction assumes that there were no other leap seconds happened.

assert_eq!(from_hmsm(3, 0, 59, 1_000) - from_hmsm(3, 0, 59, 0), Duration::seconds(1));
assert_eq!(from_hmsm(3, 0, 59, 1_500) - from_hmsm(3, 0, 59, 0),
           Duration::milliseconds(1500));
assert_eq!(from_hmsm(3, 0, 59, 1_000) - from_hmsm(3, 0, 0, 0), Duration::seconds(60));
assert_eq!(from_hmsm(3, 0, 0, 0) - from_hmsm(2, 59, 59, 1_000), Duration::seconds(1));
assert_eq!(from_hmsm(3, 0, 59, 1_000) - from_hmsm(2, 59, 59, 1_000),
           Duration::seconds(61));

type Output = Duration

impl<Tz> Sub<Duration> for DateTime<Tz> where
    Tz: TimeZone
[src]

type Output = DateTime<Tz>

impl Sub<Duration> for Timespec[src]

type Output = Timespec

impl Sub<Duration> for Duration[src]

type Output = Duration

impl Sub<Tm> for Tm[src]

type Output = Duration

impl Sub<SteadyTime> for SteadyTime[src]

type Output = Duration

impl Sub<Duration> for Tm[src]

type Output = Tm

pub fn sub(self, other: Duration) -> Tm[src]

The resulting Tm is in UTC.

impl Sub<Duration> for SteadyTime[src]

type Output = SteadyTime

impl Sub<Timespec> for Timespec[src]

type Output = Duration

impl<'a, 'b> Sub<&'a BigInt> for &'b u16[src]

type Output = BigInt

impl<'a> Sub<usize> for &'a BigInt[src]

type Output = BigInt

impl<'a> Sub<&'a u16> for BigInt[src]

type Output = BigInt

impl Sub<BigInt> for usize[src]

type Output = BigInt

impl<'a> Sub<u16> for &'a BigUint[src]

type Output = BigUint

impl<'a, 'b> Sub<&'b u64> for &'a BigUint[src]

type Output = BigUint

impl<'a> Sub<i8> for &'a BigInt[src]

type Output = BigInt

impl<'a> Sub<u16> for &'a BigInt[src]

type Output = BigInt

impl<'a> Sub<&'a BigUint> for u128[src]

type Output = BigUint

impl<'a> Sub<BigInt> for &'a i64[src]

type Output = BigInt

impl<'a> Sub<BigUint> for &'a u32[src]

type Output = BigUint

impl<'a> Sub<&'a u64> for BigUint[src]

type Output = BigUint

impl<'a> Sub<&'a u8> for BigInt[src]

type Output = BigInt

impl<'a> Sub<&'a BigInt> for i16[src]

type Output = BigInt

impl<'a> Sub<BigInt> for &'a i32[src]

type Output = BigInt

impl<'a, 'b> Sub<&'b u32> for &'a BigInt[src]

type Output = BigInt

impl Sub<u64> for BigInt[src]

type Output = BigInt

impl<'a> Sub<&'a BigInt> for u16[src]

type Output = BigInt

impl Sub<BigInt> for i128[src]

type Output = BigInt

impl<'a> Sub<BigInt> for &'a i16[src]

type Output = BigInt

impl Sub<u16> for BigInt[src]

type Output = BigInt

impl<'a> Sub<&'a i128> for BigInt[src]

type Output = BigInt

impl<'a> Sub<u64> for &'a BigUint[src]

type Output = BigUint

impl<'a> Sub<BigInt> for &'a u64[src]

type Output = BigInt

impl<'a> Sub<u128> for &'a BigInt[src]

type Output = BigInt

impl<'a> Sub<BigInt> for &'a u128[src]

type Output = BigInt

impl<'a, 'b> Sub<&'a BigInt> for &'b usize[src]

type Output = BigInt

impl<'a> Sub<i128> for &'a BigInt[src]

type Output = BigInt

impl Sub<i32> for BigInt[src]

type Output = BigInt

impl Sub<BigUint> for BigUint[src]

type Output = BigUint

impl<'a> Sub<&'a u8> for BigUint[src]

type Output = BigUint

impl<'a> Sub<&'a usize> for BigInt[src]

type Output = BigInt

impl<'a> Sub<&'a BigInt> for u64[src]

type Output = BigInt

impl<'a> Sub<&'a i8> for BigInt[src]

type Output = BigInt

impl<'a, 'b> Sub<&'a BigInt> for &'b i16[src]

type Output = BigInt

impl<'a> Sub<&'a BigInt> for usize[src]

type Output = BigInt

impl<'a> Sub<&'a BigUint> for u32[src]

type Output = BigUint

impl Sub<usize> for BigUint[src]

type Output = BigUint

impl<'a, 'b> Sub<&'a BigInt> for &'b u32[src]

type Output = BigInt

impl<'a> Sub<&'a BigUint> for u64[src]

type Output = BigUint

impl<'a, 'b> Sub<&'a BigInt> for &'b i8[src]

type Output = BigInt

impl Sub<u32> for BigUint[src]

type Output = BigUint

impl<'a> Sub<&'a isize> for BigInt[src]

type Output = BigInt

impl Sub<isize> for BigInt[src]

type Output = BigInt

impl<'a> Sub<&'a BigInt> for BigInt[src]

type Output = BigInt

impl<'a> Sub<u8> for &'a BigUint[src]

type Output = BigUint

impl<'a> Sub<isize> for &'a BigInt[src]

type Output = BigInt

impl<'a, 'b> Sub<&'b BigInt> for &'a BigInt[src]

type Output = BigInt

impl<'a, 'b> Sub<&'b usize> for &'a BigInt[src]

type Output = BigInt

impl<'a> Sub<BigInt> for &'a i8[src]

type Output = BigInt

impl<'a, 'b> Sub<&'b BigUint> for &'a BigUint[src]

type Output = BigUint

impl Sub<BigInt> for u64[src]

type Output = BigInt

impl<'a> Sub<&'a i16> for BigInt[src]

type Output = BigInt

impl<'a, 'b> Sub<&'a BigInt> for &'b u128[src]

type Output = BigInt

impl<'a> Sub<BigInt> for &'a u8[src]

type Output = BigInt

impl Sub<BigInt> for u8[src]

type Output = BigInt

impl<'a> Sub<BigUint> for &'a u8[src]

type Output = BigUint

impl<'a> Sub<i16> for &'a BigInt[src]

type Output = BigInt

impl<'a, 'b> Sub<&'a BigInt> for &'b i32[src]

type Output = BigInt

impl<'a> Sub<BigInt> for &'a isize[src]

type Output = BigInt

impl Sub<usize> for BigInt[src]

type Output = BigInt

impl<'a, 'b> Sub<&'a BigUint> for &'b usize[src]

type Output = BigUint

impl<'a> Sub<BigUint> for &'a u16[src]

type Output = BigUint

impl<'a, 'b> Sub<&'b u64> for &'a BigInt[src]

type Output = BigInt

impl Sub<u8> for BigInt[src]

type Output = BigInt

impl<'a> Sub<u8> for &'a BigInt[src]

type Output = BigInt

impl Sub<BigUint> for u32[src]

type Output = BigUint

impl<'a> Sub<&'a BigInt> for i64[src]

type Output = BigInt

impl<'a, 'b> Sub<&'b i8> for &'a BigInt[src]

type Output = BigInt

impl Sub<BigUint> for u16[src]

type Output = BigUint

impl Sub<BigInt> for i16[src]

type Output = BigInt

impl Sub<BigInt> for i64[src]

type Output = BigInt

impl<'a, 'b> Sub<&'b u8> for &'a BigUint[src]

type Output = BigUint

impl<'a> Sub<BigUint> for &'a u64[src]

type Output = BigUint

impl<'a> Sub<BigInt> for &'a u32[src]

type Output = BigInt

impl<'a> Sub<&'a usize> for BigUint[src]

type Output = BigUint

impl Sub<BigInt> for u16[src]

type Output = BigInt

impl<'a> Sub<BigUint> for &'a BigUint[src]

type Output = BigUint

impl<'a, 'b> Sub<&'b u16> for &'a BigUint[src]

type Output = BigUint

impl<'a> Sub<BigUint> for &'a u128[src]

type Output = BigUint

impl<'a> Sub<&'a BigInt> for u8[src]

type Output = BigInt

impl<'a> Sub<&'a BigUint> for u8[src]

type Output = BigUint

impl<'a> Sub<BigInt> for &'a usize[src]

type Output = BigInt

impl Sub<BigInt> for BigInt[src]

type Output = BigInt

impl<'a> Sub<&'a BigInt> for u128[src]

type Output = BigInt

impl<'a> Sub<&'a BigInt> for i32[src]

type Output = BigInt

impl<'a, 'b> Sub<&'b isize> for &'a BigInt[src]

type Output = BigInt

impl<'a, 'b> Sub<&'b u128> for &'a BigInt[src]

type Output = BigInt

impl Sub<BigInt> for i8[src]

type Output = BigInt

impl<'a, 'b> Sub<&'b i64> for &'a BigInt[src]

type Output = BigInt

impl Sub<BigInt> for u128[src]

type Output = BigInt

impl Sub<u64> for BigUint[src]

type Output = BigUint

impl<'a> Sub<BigInt> for &'a BigInt[src]

type Output = BigInt

impl<'a> Sub<u128> for &'a BigUint[src]

type Output = BigUint

impl<'a, 'b> Sub<&'a BigUint> for &'b u16[src]

type Output = BigUint

impl<'a> Sub<&'a BigInt> for i128[src]

type Output = BigInt

impl<'a> Sub<BigUint> for &'a usize[src]

type Output = BigUint

impl<'a, 'b> Sub<&'a BigUint> for &'b u64[src]

type Output = BigUint

impl<'a> Sub<usize> for &'a BigUint[src]

type Output = BigUint

impl Sub<BigUint> for u8[src]

type Output = BigUint

impl<'a, 'b> Sub<&'b usize> for &'a BigUint[src]

type Output = BigUint

impl<'a, 'b> Sub<&'a BigInt> for &'b u8[src]

type Output = BigInt

impl<'a, 'b> Sub<&'a BigUint> for &'b u128[src]

type Output = BigUint

impl Sub<u128> for BigInt[src]

type Output = BigInt

impl<'a> Sub<i32> for &'a BigInt[src]

type Output = BigInt

impl Sub<i64> for BigInt[src]

type Output = BigInt

impl Sub<BigUint> for u64[src]

type Output = BigUint

impl Sub<u128> for BigUint[src]

type Output = BigUint

impl<'a> Sub<u64> for &'a BigInt[src]

type Output = BigInt

impl Sub<i8> for BigInt[src]

type Output = BigInt

impl<'a> Sub<&'a BigInt> for isize[src]

type Output = BigInt

impl<'a> Sub<&'a i64> for BigInt[src]

type Output = BigInt

impl<'a> Sub<&'a BigUint> for usize[src]

type Output = BigUint

impl<'a, 'b> Sub<&'a BigUint> for &'b u8[src]

type Output = BigUint

impl Sub<u8> for BigUint[src]

type Output = BigUint

impl<'a> Sub<&'a BigInt> for u32[src]

type Output = BigInt

impl<'a> Sub<BigInt> for &'a i128[src]

type Output = BigInt

impl<'a, 'b> Sub<&'a BigInt> for &'b i64[src]

type Output = BigInt

impl<'a> Sub<&'a u32> for BigInt[src]

type Output = BigInt

impl<'a, 'b> Sub<&'b u32> for &'a BigUint[src]

type Output = BigUint

impl Sub<BigUint> for u128[src]

type Output = BigUint

impl<'a, 'b> Sub<&'b i16> for &'a BigInt[src]

type Output = BigInt

impl<'a, 'b> Sub<&'b u128> for &'a BigUint[src]

type Output = BigUint

impl<'a> Sub<&'a BigInt> for i8[src]

type Output = BigInt

impl<'a> Sub<&'a u128> for BigUint[src]

type Output = BigUint

impl<'a, 'b> Sub<&'b i128> for &'a BigInt[src]

type Output = BigInt

impl<'a, 'b> Sub<&'b i32> for &'a BigInt[src]

type Output = BigInt

impl<'a> Sub<&'a i32> for BigInt[src]

type Output = BigInt

impl<'a, 'b> Sub<&'a BigUint> for &'b u32[src]

type Output = BigUint

impl Sub<u16> for BigUint[src]

type Output = BigUint

impl<'a, 'b> Sub<&'b u8> for &'a BigInt[src]

type Output = BigInt

impl<'a, 'b> Sub<&'a BigInt> for &'b isize[src]

type Output = BigInt

impl<'a, 'b> Sub<&'a BigInt> for &'b u64[src]

type Output = BigInt

impl<'a> Sub<u32> for &'a BigInt[src]

type Output = BigInt

impl Sub<i16> for BigInt[src]

type Output = BigInt

impl<'a> Sub<&'a BigUint> for u16[src]

type Output = BigUint

impl<'a> Sub<&'a u128> for BigInt[src]

type Output = BigInt

impl<'a, 'b> Sub<&'a BigInt> for &'b i128[src]

type Output = BigInt

impl<'a> Sub<BigInt> for &'a u16[src]

type Output = BigInt

impl<'a> Sub<i64> for &'a BigInt[src]

type Output = BigInt

impl<'a> Sub<&'a BigUint> for BigUint[src]

type Output = BigUint

impl Sub<i128> for BigInt[src]

type Output = BigInt

impl<'a> Sub<&'a u64> for BigInt[src]

type Output = BigInt

impl<'a> Sub<&'a u16> for BigUint[src]

type Output = BigUint

impl<'a, 'b> Sub<&'b u16> for &'a BigInt[src]

type Output = BigInt

impl Sub<BigInt> for u32[src]

type Output = BigInt

impl Sub<BigUint> for usize[src]

type Output = BigUint

impl<'a> Sub<u32> for &'a BigUint[src]

type Output = BigUint

impl Sub<u32> for BigInt[src]

type Output = BigInt

impl<'a> Sub<&'a u32> for BigUint[src]

type Output = BigUint

impl Sub<BigInt> for i32[src]

type Output = BigInt

impl Sub<BigInt> for isize[src]

type Output = BigInt

impl<'a> Sub<Complex<u32>> for &'a u32[src]

type Output = Complex<u32>

impl<'a, 'b, T> Sub<&'b Complex<T>> for &'a Complex<T> where
    T: Clone + Num
[src]

type Output = Complex<T>

impl<T> Sub<Complex<T>> for Complex<T> where
    T: Clone + Num
[src]

type Output = Complex<T>

impl<'a, 'b> Sub<&'a Complex<u64>> for &'b u64[src]

type Output = Complex<u64>

impl<'a> Sub<Complex<i16>> for &'a i16[src]

type Output = Complex<i16>

impl<'a> Sub<&'a Complex<f64>> for f64[src]

type Output = Complex<f64>

impl<'a> Sub<Complex<f64>> for &'a f64[src]

type Output = Complex<f64>

impl<'a, 'b> Sub<&'a Complex<i64>> for &'b i64[src]

type Output = Complex<i64>

impl<'a> Sub<&'a Complex<f32>> for f32[src]

type Output = Complex<f32>

impl Sub<Complex<i128>> for i128[src]

type Output = Complex<i128>

impl<'a, T> Sub<&'a Complex<T>> for Complex<T> where
    T: Clone + Num
[src]

type Output = Complex<T>

impl<'a, 'b> Sub<&'a Complex<isize>> for &'b isize[src]

type Output = Complex<isize>

impl Sub<Complex<isize>> for isize[src]

type Output = Complex<isize>

impl<'a> Sub<Complex<i32>> for &'a i32[src]

type Output = Complex<i32>

impl<'a, 'b> Sub<&'a Complex<i128>> for &'b i128[src]

type Output = Complex<i128>

impl<'a> Sub<Complex<i128>> for &'a i128[src]

type Output = Complex<i128>

impl<'a> Sub<&'a Complex<isize>> for isize[src]

type Output = Complex<isize>

impl Sub<Complex<usize>> for usize[src]

type Output = Complex<usize>

impl<'a> Sub<&'a Complex<i8>> for i8[src]

type Output = Complex<i8>

impl<'a> Sub<Complex<i8>> for &'a i8[src]

type Output = Complex<i8>

impl<'a, 'b> Sub<&'a Complex<i8>> for &'b i8[src]

type Output = Complex<i8>

impl Sub<Complex<u128>> for u128[src]

type Output = Complex<u128>

impl<'a, T> Sub<&'a T> for Complex<T> where
    T: Clone + Num
[src]

type Output = Complex<T>

impl<'a> Sub<Complex<usize>> for &'a usize[src]

type Output = Complex<usize>

impl Sub<Complex<i32>> for i32[src]

type Output = Complex<i32>

impl<'a> Sub<&'a Complex<u32>> for u32[src]

type Output = Complex<u32>

impl<'a> Sub<Complex<u64>> for &'a u64[src]

type Output = Complex<u64>

impl<'a, 'b> Sub<&'a Complex<f32>> for &'b f32[src]

type Output = Complex<f32>

impl<'a, 'b> Sub<&'a Complex<i32>> for &'b i32[src]

type Output = Complex<i32>

impl<'a, 'b> Sub<&'a Complex<u16>> for &'b u16[src]

type Output = Complex<u16>

impl<'a, T> Sub<Complex<T>> for &'a Complex<T> where
    T: Clone + Num
[src]

type Output = Complex<T>

impl<'a> Sub<&'a Complex<u16>> for u16[src]

type Output = Complex<u16>

impl<'a, 'b> Sub<&'a Complex<u32>> for &'b u32[src]

type Output = Complex<u32>

impl<'a> Sub<&'a Complex<i128>> for i128[src]

type Output = Complex<i128>

impl Sub<Complex<u16>> for u16[src]

type Output = Complex<u16>

impl<'a, 'b> Sub<&'a Complex<u128>> for &'b u128[src]

type Output = Complex<u128>

impl<'a> Sub<Complex<i64>> for &'a i64[src]

type Output = Complex<i64>

impl Sub<Complex<i16>> for i16[src]

type Output = Complex<i16>

impl<'a, 'b> Sub<&'a Complex<i16>> for &'b i16[src]

type Output = Complex<i16>

impl<'a, 'b, T> Sub<&'a T> for &'b Complex<T> where
    T: Clone + Num
[src]

type Output = Complex<T>

impl<'a> Sub<&'a Complex<u64>> for u64[src]

type Output = Complex<u64>

impl Sub<Complex<i8>> for i8[src]

type Output = Complex<i8>

impl<'a> Sub<Complex<isize>> for &'a isize[src]

type Output = Complex<isize>

impl<'a> Sub<Complex<u16>> for &'a u16[src]

type Output = Complex<u16>

impl Sub<Complex<u8>> for u8[src]

type Output = Complex<u8>

impl Sub<Complex<u64>> for u64[src]

type Output = Complex<u64>

impl<'a> Sub<&'a Complex<i16>> for i16[src]

type Output = Complex<i16>

impl<'a> Sub<&'a Complex<u8>> for u8[src]

type Output = Complex<u8>

impl<'a> Sub<&'a Complex<i64>> for i64[src]

type Output = Complex<i64>

impl<'a, T> Sub<T> for &'a Complex<T> where
    T: Clone + Num
[src]

type Output = Complex<T>

impl<'a> Sub<&'a Complex<i32>> for i32[src]

type Output = Complex<i32>

impl<'a> Sub<Complex<u128>> for &'a u128[src]

type Output = Complex<u128>

impl Sub<Complex<i64>> for i64[src]

type Output = Complex<i64>

impl Sub<Complex<f32>> for f32[src]

type Output = Complex<f32>

impl<T> Sub<T> for Complex<T> where
    T: Clone + Num
[src]

type Output = Complex<T>

impl<'a, 'b> Sub<&'a Complex<usize>> for &'b usize[src]

type Output = Complex<usize>

impl<'a, 'b> Sub<&'a Complex<f64>> for &'b f64[src]

type Output = Complex<f64>

impl<'a> Sub<Complex<u8>> for &'a u8[src]

type Output = Complex<u8>

impl Sub<Complex<f64>> for f64[src]

type Output = Complex<f64>

impl<'a> Sub<&'a Complex<u128>> for u128[src]

type Output = Complex<u128>

impl Sub<Complex<u32>> for u32[src]

type Output = Complex<u32>

impl<'a> Sub<&'a Complex<usize>> for usize[src]

type Output = Complex<usize>

impl<'a, 'b> Sub<&'a Complex<u8>> for &'b u8[src]

type Output = Complex<u8>

impl<'a> Sub<Complex<f32>> for &'a f32[src]

type Output = Complex<f32>

impl<'a, T> Sub<&'a T> for Ratio<T> where
    T: Clone + Integer
[src]

type Output = Ratio<T>

impl<'a, 'b, T> Sub<&'b Ratio<T>> for &'a Ratio<T> where
    T: Clone + Integer
[src]

type Output = Ratio<T>

impl<T> Sub<Ratio<T>> for Ratio<T> where
    T: Clone + Integer
[src]

type Output = Ratio<T>

impl<T> Sub<T> for Ratio<T> where
    T: Clone + Integer
[src]

type Output = Ratio<T>

impl<'a, T> Sub<Ratio<T>> for &'a Ratio<T> where
    T: Clone + Integer
[src]

type Output = Ratio<T>

impl<'a, 'b, T> Sub<&'b T> for &'a Ratio<T> where
    T: Clone + Integer
[src]

type Output = Ratio<T>

impl<'a, T> Sub<T> for &'a Ratio<T> where
    T: Clone + Integer
[src]

type Output = Ratio<T>

impl<'a, T> Sub<&'a Ratio<T>> for Ratio<T> where
    T: Clone + Integer
[src]

type Output = Ratio<T>

impl<'a, '_, K, V, S, Q> Sub<&'_ Q> for &'a DashMap<K, V, S> where
    V: 'a,
    S: Clone + BuildHasher,
    Q: Hash + Eq + ?Sized,
    K: 'a + Eq + Hash + Borrow<Q>, 

type Output = Option<(K, V)>

impl<U, B> Sub<B1> for UInt<UInt<U, B>, B1> where
    B: Bit,
    U: Unsigned, 

UInt<U, B1> - B1 = UInt<U, B0>

type Output = UInt<UInt<U, B>, B0>

impl<U> Sub<NInt<U>> for Z0 where
    U: NonZero + Unsigned, 

Z0 - N = P

type Output = PInt<U>

impl Sub<B1> for UInt<UTerm, B1>

UInt<UTerm, B1> - B1 = UTerm

type Output = UTerm

impl<U> Sub<PInt<U>> for Z0 where
    U: NonZero + Unsigned, 

Z0 - P = N

type Output = NInt<U>

impl<U> Sub<Z0> for PInt<U> where
    U: NonZero + Unsigned, 

PInt - Z0 = PInt

type Output = PInt<U>

impl<Ul, Ur> Sub<PInt<Ur>> for NInt<Ul> where
    Ul: NonZero + Unsigned + Add<Ur>,
    Ur: NonZero + Unsigned,
    <Ul as Add<Ur>>::Output: Unsigned,
    <Ul as Add<Ur>>::Output: NonZero, 

N(Ul) - P(Ur) = N(Ul + Ur)

type Output = NInt<<Ul as Add<Ur>>::Output>

impl Sub<UTerm> for UTerm

UTerm - UTerm = UTerm

type Output = UTerm

impl<U> Sub<Z0> for NInt<U> where
    U: NonZero + Unsigned, 

NInt - Z0 = NInt

type Output = NInt<U>

impl Sub<B0> for UTerm

UTerm - B0 = Term

type Output = UTerm

impl<U> Sub<B1> for UInt<U, B0> where
    U: Unsigned + Sub<B1>,
    <U as Sub<B1>>::Output: Unsigned, 

UInt<U, B0> - B1 = UInt<U - B1, B1>

type Output = UInt<<U as Sub<B1>>::Output, B1>

impl<Vl, Al, Vr, Ar> Sub<TArr<Vr, Ar>> for TArr<Vl, Al> where
    Vl: Sub<Vr>,
    Al: Sub<Ar>, 

type Output = TArr<<Vl as Sub<Vr>>::Output, <Al as Sub<Ar>>::Output>

impl Sub<ATerm> for ATerm

type Output = ATerm

impl<Ul, Ur> Sub<NInt<Ur>> for NInt<Ul> where
    Ul: NonZero + Unsigned,
    Ur: NonZero + Unsigned + Cmp<Ul> + PrivateIntegerAdd<<Ur as Cmp<Ul>>::Output, Ul>, 

N(Ul) - N(Ur): We resolve this with our PrivateAdd

type Output = <Ur as PrivateIntegerAdd<<Ur as Cmp<Ul>>::Output, Ul>>::Output

impl Sub<Z0> for Z0

Z0 - Z0 = Z0

type Output = Z0

impl<U, B> Sub<B0> for UInt<U, B> where
    B: Bit,
    U: Unsigned, 

UInt - B0 = UInt

type Output = UInt<U, B>

impl<Ul, Ur> Sub<PInt<Ur>> for PInt<Ul> where
    Ul: NonZero + Unsigned + Cmp<Ur> + PrivateIntegerAdd<<Ul as Cmp<Ur>>::Output, Ur>,
    Ur: NonZero + Unsigned, 

P(Ul) - P(Ur): We resolve this with our PrivateAdd

type Output = <Ul as PrivateIntegerAdd<<Ul as Cmp<Ur>>::Output, Ur>>::Output

impl<Ul, Ur> Sub<NInt<Ur>> for PInt<Ul> where
    Ul: NonZero + Unsigned + Add<Ur>,
    Ur: NonZero + Unsigned,
    <Ul as Add<Ur>>::Output: Unsigned,
    <Ul as Add<Ur>>::Output: NonZero, 

P(Ul) - N(Ur) = P(Ul + Ur)

type Output = PInt<<Ul as Add<Ur>>::Output>

impl<Ul, Bl, Ur> Sub<Ur> for UInt<Ul, Bl> where
    Ul: Unsigned,
    Ur: Unsigned,
    Bl: Bit,
    UInt<Ul, Bl>: PrivateSub<Ur>,
    <UInt<Ul, Bl> as PrivateSub<Ur>>::Output: Trim, 

Subtracting unsigned integers. We just do our PrivateSub and then Trim the output.

type Output = <<UInt<Ul, Bl> as PrivateSub<Ur>>::Output as Trim>::Output

impl Sub<Instant> for Instant[src]

type Output = Duration

impl Sub<Duration> for Instant[src]

type Output = Instant

impl Sub<Ready> for Ready[src]

type Output = Ready

impl Sub<CMSOptions> for CMSOptions[src]

type Output = CMSOptions

pub fn sub(self, other: CMSOptions) -> CMSOptions[src]

Returns the set difference of the two sets of flags.

impl Sub<Pkcs7Flags> for Pkcs7Flags[src]

type Output = Pkcs7Flags

pub fn sub(self, other: Pkcs7Flags) -> Pkcs7Flags[src]

Returns the set difference of the two sets of flags.

impl Sub<OcspFlag> for OcspFlag[src]

type Output = OcspFlag

pub fn sub(self, other: OcspFlag) -> OcspFlag[src]

Returns the set difference of the two sets of flags.

impl<'a, 'b> Sub<&'b BigNumRef> for &'a BigNumRef[src]

type Output = BigNum

impl<'a, 'b> Sub<&'b BigNum> for &'a BigNum[src]

type Output = BigNum

impl Sub<X509VerifyFlags> for X509VerifyFlags[src]

type Output = X509VerifyFlags

pub fn sub(self, other: X509VerifyFlags) -> X509VerifyFlags[src]

Returns the set difference of the two sets of flags.

impl Sub<SslOptions> for SslOptions[src]

type Output = SslOptions

pub fn sub(self, other: SslOptions) -> SslOptions[src]

Returns the set difference of the two sets of flags.

impl Sub<SslSessionCacheMode> for SslSessionCacheMode[src]

type Output = SslSessionCacheMode

pub fn sub(self, other: SslSessionCacheMode) -> SslSessionCacheMode[src]

Returns the set difference of the two sets of flags.

impl Sub<SslVerifyMode> for SslVerifyMode[src]

type Output = SslVerifyMode

pub fn sub(self, other: SslVerifyMode) -> SslVerifyMode[src]

Returns the set difference of the two sets of flags.

impl Sub<SslMode> for SslMode[src]

type Output = SslMode

pub fn sub(self, other: SslMode) -> SslMode[src]

Returns the set difference of the two sets of flags.

impl Sub<ExtensionContext> for ExtensionContext[src]

type Output = ExtensionContext

pub fn sub(self, other: ExtensionContext) -> ExtensionContext[src]

Returns the set difference of the two sets of flags.

impl Sub<ShutdownState> for ShutdownState[src]

type Output = ShutdownState

pub fn sub(self, other: ShutdownState) -> ShutdownState[src]

Returns the set difference of the two sets of flags.

impl<'a, 'b> Sub<&'b BigNum> for &'a BigNumRef[src]

type Output = BigNum

impl Sub<X509CheckFlags> for X509CheckFlags[src]

type Output = X509CheckFlags

pub fn sub(self, other: X509CheckFlags) -> X509CheckFlags[src]

Returns the set difference of the two sets of flags.

impl<'a, 'b> Sub<&'b BigNumRef> for &'a BigNum[src]

type Output = BigNum

impl Sub<Duration> for Instant[src]

type Output = Instant

impl Sub<Instant> for Instant[src]

type Output = Duration

impl<T> Sub<T> for Ready where
    T: Into<Ready>, 
[src]

type Output = Ready

impl Sub<UnixReady> for UnixReady[src]

type Output = UnixReady

impl Sub<PollOpt> for PollOpt[src]

type Output = PollOpt

impl<'_, '_, T, S1, S2> Sub<&'_ IndexSet<T, S2>> for &'_ IndexSet<T, S1> where
    T: Eq + Hash + Clone,
    S1: BuildHasher + Default,
    S2: BuildHasher
[src]

type Output = IndexSet<T, S1>

pub fn sub(
    self,
    other: &IndexSet<T, S2>
) -> <&'_ IndexSet<T, S1> as Sub<&'_ IndexSet<T, S2>>>::Output
[src]

Returns the set difference, cloned into a new set.

Values are collected in the same order that they appear in self.

impl<'_, '_, T, S> Sub<&'_ HashSet<T, S>> for &'_ HashSet<T, S> where
    T: Eq + Hash + Clone,
    S: BuildHasher + Default

type Output = HashSet<T, S>

pub fn sub(self, rhs: &HashSet<T, S>) -> HashSet<T, S>

Returns the difference of self and rhs as a new HashSet<T, S>.

Examples

use hashbrown::HashSet;

let a: HashSet<_> = vec![1, 2, 3].into_iter().collect();
let b: HashSet<_> = vec![3, 4, 5].into_iter().collect();

let set = &a - &b;

let mut i = 0;
let expected = [1, 2];
for x in &set {
    assert!(expected.contains(x));
    i += 1;
}
assert_eq!(i, expected.len());
Loading content...

Implementors

impl Sub<Duration> for af_lib::prelude::Duration[src]

type Output = Duration

impl Sub<Duration> for Time[src]

type Output = Time

impl Sub<Time> for Time[src]

type Output = Duration

Loading content...