1.0.0[][src]Trait af_lib::prelude::af_core::test::prelude::IndexMut

#[lang = "index_mut"]pub trait IndexMut<Idx>: Index<Idx> where
    Idx: ?Sized
{ pub fn index_mut(&mut self, index: Idx) -> &mut Self::Output; }

Used for indexing operations (container[index]) in mutable contexts.

container[index] is actually syntactic sugar for *container.index_mut(index), but only when used as a mutable value. If an immutable value is requested, the Index trait is used instead. This allows nice things such as v[index] = value.

Examples

A very simple implementation of a Balance struct that has two sides, where each can be indexed mutably and immutably.

use std::ops::{Index, IndexMut};

#[derive(Debug)]
enum Side {
    Left,
    Right,
}

#[derive(Debug, PartialEq)]
enum Weight {
    Kilogram(f32),
    Pound(f32),
}

struct Balance {
    pub left: Weight,
    pub right: Weight,
}

impl Index<Side> for Balance {
    type Output = Weight;

    fn index(&self, index: Side) -> &Self::Output {
        println!("Accessing {:?}-side of balance immutably", index);
        match index {
            Side::Left => &self.left,
            Side::Right => &self.right,
        }
    }
}

impl IndexMut<Side> for Balance {
    fn index_mut(&mut self, index: Side) -> &mut Self::Output {
        println!("Accessing {:?}-side of balance mutably", index);
        match index {
            Side::Left => &mut self.left,
            Side::Right => &mut self.right,
        }
    }
}

let mut balance = Balance {
    right: Weight::Kilogram(2.5),
    left: Weight::Pound(1.5),
};

// In this case, `balance[Side::Right]` is sugar for
// `*balance.index(Side::Right)`, since we are only *reading*
// `balance[Side::Right]`, not writing it.
assert_eq!(balance[Side::Right], Weight::Kilogram(2.5));

// However, in this case `balance[Side::Left]` is sugar for
// `*balance.index_mut(Side::Left)`, since we are writing
// `balance[Side::Left]`.
balance[Side::Left] = Weight::Kilogram(3.0);

Required methods

pub fn index_mut(&mut self, index: Idx) -> &mut Self::Output[src]

Performs the mutable indexing (container[index]) operation.

Loading content...

Implementations on Foreign Types

impl IndexMut<RangeFull> for OsString[src]

impl<I> IndexMut<I> for str where
    I: SliceIndex<str>, 
[src]

impl<T, I> IndexMut<I> for [T] where
    I: SliceIndex<[T]>, 
[src]

impl<T, I, const N: usize> IndexMut<I> for [T; N] where
    [T]: IndexMut<I>, 
[src]

impl IndexMut<RangeToInclusive<usize>> for String[src]

impl IndexMut<RangeFrom<usize>> for String[src]

impl IndexMut<RangeFull> for String[src]

impl IndexMut<RangeInclusive<usize>> for String[src]

impl IndexMut<Range<usize>> for String[src]

impl<T, I, A> IndexMut<I> for Vec<T, A> where
    A: Allocator,
    I: SliceIndex<[T]>, 
[src]

impl<A> IndexMut<usize> for VecDeque<A>[src]

impl IndexMut<RangeTo<usize>> for String[src]

impl<A, I> IndexMut<I> for SmallVec<A> where
    A: Array,
    I: SliceIndex<[<A as Array>::Item]>, 

impl IndexMut<RangeToInclusive<usize>> for UninitSlice[src]

impl IndexMut<Range<usize>> for UninitSlice[src]

impl IndexMut<RangeFrom<usize>> for UninitSlice[src]

impl IndexMut<RangeInclusive<usize>> for UninitSlice[src]

impl IndexMut<RangeTo<usize>> for UninitSlice[src]

impl IndexMut<RangeFull> for UninitSlice[src]

impl<'s, T, I> IndexMut<I> for SliceVec<'s, T> where
    I: SliceIndex<[T]>, 

impl<A, I> IndexMut<I> for TinyVec<A> where
    A: Array,
    I: SliceIndex<[<A as Array>::Item]>, 

impl<A, I> IndexMut<I> for ArrayVec<A> where
    A: Array,
    I: SliceIndex<[<A as Array>::Item]>, 

impl<'a, BK, K, V> IndexMut<&'a BK> for OrdMap<K, V> where
    V: Clone,
    K: Ord + Clone + Borrow<BK>,
    BK: Ord + ?Sized

impl<'a, BK, K, V, S> IndexMut<&'a BK> for HashMap<K, V, S> where
    V: Clone,
    S: BuildHasher,
    K: Hash + Eq + Clone + Borrow<BK>,
    BK: Hash + Eq + ?Sized

impl<A> IndexMut<usize> for Vector<A> where
    A: Clone

pub fn index_mut(
    &mut self,
    index: usize
) -> &mut <Vector<A> as Index<usize>>::Output

Get a mutable reference to the value at index index in the vector.

Time: O(log n)

impl<A, N, I> IndexMut<I> for Chunk<A, N> where
    N: ChunkLength<A>,
    I: SliceIndex<[A]>, 

impl<A, N> IndexMut<usize> for SparseChunk<A, N> where
    N: ChunkLength<A> + Bits, 

impl<T> IndexMut<usize> for Arena<T>

impl<T> IndexMut<usize> for StackRef<T> where
    T: Stackable
[src]

impl<T> IndexMut<usize> for Slab<T>[src]

impl<A> IndexMut<RangeFrom<usize>> for SmallString<A> where
    A: Array<Item = u8>, 

impl<A> IndexMut<Range<usize>> for SmallString<A> where
    A: Array<Item = u8>, 

impl<A> IndexMut<RangeTo<usize>> for SmallString<A> where
    A: Array<Item = u8>, 

impl<A> IndexMut<RangeFull> for SmallString<A> where
    A: Array<Item = u8>, 

impl<K, V, S> IndexMut<usize> for IndexMap<K, V, S>[src]

Access IndexMap values at indexed positions.

Mutable indexing allows changing / updating indexed values that are already present.

You can not insert new values with index syntax, use .insert().

Examples

use indexmap::IndexMap;

let mut map = IndexMap::new();
for word in "Lorem ipsum dolor sit amet".split_whitespace() {
    map.insert(word.to_lowercase(), word.to_string());
}
let lorem = &mut map[0];
assert_eq!(lorem, "Lorem");
lorem.retain(char::is_lowercase);
assert_eq!(map["lorem"], "orem");
use indexmap::IndexMap;

let mut map = IndexMap::new();
map.insert("foo", 1);
map[10] = 1; // panics!

pub fn index_mut(&mut self, index: usize) -> &mut V

Notable traits for &'_ mut R

impl<'_, R> Read for &'_ mut R where
    R: Read + ?Sized
impl<'_, W> Write for &'_ mut W where
    W: Write + ?Sized
impl<'_, F> Future for &'_ mut F where
    F: Unpin + Future + ?Sized
type Output = <F as Future>::Output;impl<'_, I> Iterator for &'_ mut I where
    I: Iterator + ?Sized
type Item = <I as Iterator>::Item;
[src]

Returns a mutable reference to the value at the supplied index.

Panics if index is out of bounds.

impl<'_, K, V, Q, S> IndexMut<&'_ Q> for IndexMap<K, V, S> where
    S: BuildHasher,
    Q: Hash + Equivalent<K> + ?Sized,
    K: Hash + Eq
[src]

Access IndexMap values corresponding to a key.

Mutable indexing allows changing / updating values of key-value pairs that are already present.

You can not insert new pairs with index syntax, use .insert().

Examples

use indexmap::IndexMap;

let mut map = IndexMap::new();
for word in "Lorem ipsum dolor sit amet".split_whitespace() {
    map.insert(word.to_lowercase(), word.to_string());
}
let lorem = &mut map["lorem"];
assert_eq!(lorem, "Lorem");
lorem.retain(char::is_lowercase);
assert_eq!(map["lorem"], "orem");
use indexmap::IndexMap;

let mut map = IndexMap::new();
map.insert("foo", 1);
map["bar"] = 1; // panics!

pub fn index_mut(&mut self, key: &Q) -> &mut V

Notable traits for &'_ mut R

impl<'_, R> Read for &'_ mut R where
    R: Read + ?Sized
impl<'_, W> Write for &'_ mut W where
    W: Write + ?Sized
impl<'_, F> Future for &'_ mut F where
    F: Unpin + Future + ?Sized
type Output = <F as Future>::Output;impl<'_, I> Iterator for &'_ mut I where
    I: Iterator + ?Sized
type Item = <I as Iterator>::Item;
[src]

Returns a mutable reference to the value corresponding to the supplied key.

Panics if key is not present in the map.

Loading content...

Implementors

impl<'a, Q> IndexMut<&'a Q> for Map<String, Value> where
    Q: Ord + Eq + Hash + ?Sized,
    String: Borrow<Q>, 
[src]

Mutably access an element of this map. Panics if the given key is not present in the map.

map["key"] = json!("value");

impl<I> IndexMut<I> for Value where
    I: Index
[src]

pub fn index_mut(&mut self, index: I) -> &mut Value[src]

Write into a serde_json::Value using the syntax value[0] = ... or value["k"] = ....

If the index is a number, the value must be an array of length bigger than the index. Indexing into a value that is not an array or an array that is too small will panic.

If the index is a string, the value must be an object or null which is treated like an empty object. If the key is not already present in the object, it will be inserted with a value of null. Indexing into a value that is neither an object nor null will panic.

Examples

let mut data = json!({ "x": 0 });

// replace an existing key
data["x"] = json!(1);

// insert a new key
data["y"] = json!([false, false, false]);

// replace an array value
data["y"][0] = json!(true);

// inserted a deeply nested key
data["a"]["b"]["c"]["d"] = json!(true);

println!("{}", data);
Loading content...