1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
#![allow(clippy::unreadable_literal)]

use crate::arch::*;
use core::mem;

use super::{Aes128, Aes192, Aes256};
use cipher::stream::{
    FromBlockCipher, LoopError, OverflowError, SeekNum, SyncStreamCipher, SyncStreamCipherSeek,
};
use cipher::{consts::U16, generic_array::GenericArray, BlockCipher};

const BLOCK_SIZE: usize = 16;
const PAR_BLOCKS: usize = 8;
const PAR_BLOCKS_SIZE: usize = PAR_BLOCKS * BLOCK_SIZE;

#[inline(always)]
pub fn xor(buf: &mut [u8], key: &[u8]) {
    debug_assert_eq!(buf.len(), key.len());
    for (a, b) in buf.iter_mut().zip(key) {
        *a ^= *b;
    }
}

#[inline(always)]
fn xor_block8(buf: &mut [u8], ctr: [__m128i; 8]) {
    debug_assert_eq!(buf.len(), PAR_BLOCKS_SIZE);

    // Safety: `loadu` and `storeu` support unaligned access
    #[allow(clippy::cast_ptr_alignment)]
    unsafe {
        // compiler should unroll this loop
        for i in 0..8 {
            let ptr = buf.as_mut_ptr().offset(16 * i) as *mut __m128i;
            let data = _mm_loadu_si128(ptr);
            let data = _mm_xor_si128(data, ctr[i as usize]);
            _mm_storeu_si128(ptr, data);
        }
    }
}

#[inline(always)]
fn swap_bytes(v: __m128i) -> __m128i {
    unsafe {
        let mask = _mm_set_epi64x(0x08090a0b0c0d0e0f, 0x0001020304050607);
        _mm_shuffle_epi8(v, mask)
    }
}

#[inline(always)]
fn inc_be(v: __m128i) -> __m128i {
    unsafe { _mm_add_epi64(v, _mm_set_epi64x(1, 0)) }
}

#[inline(always)]
fn load(val: &GenericArray<u8, U16>) -> __m128i {
    // Safety: `loadu` supports unaligned loads
    #[allow(clippy::cast_ptr_alignment)]
    unsafe {
        _mm_loadu_si128(val.as_ptr() as *const __m128i)
    }
}

macro_rules! impl_ctr {
    ($name:ident, $cipher:ty, $doc:expr) => {
        #[doc=$doc]
        #[derive(Clone)]
        pub struct $name {
            nonce: __m128i,
            ctr: __m128i,
            cipher: $cipher,
            block: [u8; BLOCK_SIZE],
            pos: u8,
        }

        impl $name {
            #[inline(always)]
            fn gen_block(&mut self) {
                let block = self.cipher.encrypt(swap_bytes(self.ctr));
                self.block = unsafe { mem::transmute(block) }
            }

            #[inline(always)]
            fn next_block(&mut self) -> __m128i {
                let block = swap_bytes(self.ctr);
                self.ctr = inc_be(self.ctr);
                self.cipher.encrypt(block)
            }

            #[inline(always)]
            fn next_block8(&mut self) -> [__m128i; 8] {
                let mut ctr = self.ctr;
                let mut block8: [__m128i; 8] = unsafe { mem::zeroed() };
                for i in 0..8 {
                    block8[i] = swap_bytes(ctr);
                    ctr = inc_be(ctr);
                }
                self.ctr = ctr;

                self.cipher.encrypt8(block8)
            }

            #[inline(always)]
            fn get_u64_ctr(&self) -> u64 {
                let (ctr, nonce) = unsafe {(
                    mem::transmute::<__m128i, [u64; 2]>(self.ctr)[1],
                    mem::transmute::<__m128i, [u64; 2]>(self.nonce)[1],
                )};
                ctr.wrapping_sub(nonce)
            }

            /// Check if provided data will not overflow counter
            #[inline(always)]
            fn check_data_len(&self, data: &[u8]) -> Result<(), LoopError> {
                let bs = BLOCK_SIZE;
                let leftover_bytes = bs - self.pos as usize;
                if data.len() < leftover_bytes {
                    return Ok(());
                }
                let blocks = 1 + (data.len() - leftover_bytes) / bs;
                self.get_u64_ctr()
                    .checked_add(blocks as u64)
                    .ok_or(LoopError)
                    .map(|_| ())
            }
        }

        impl FromBlockCipher for $name {
            type BlockCipher = $cipher;
            type NonceSize = <$cipher as BlockCipher>::BlockSize;

            fn from_block_cipher(
                cipher: $cipher,
                nonce: &GenericArray<u8, Self::NonceSize>,
            ) -> Self {
                let nonce = swap_bytes(load(nonce));
                Self {
                    nonce,
                    ctr: nonce,
                    cipher,
                    block: [0u8; BLOCK_SIZE],
                    pos: 0,
                }
            }
        }

        impl SyncStreamCipher for $name {
            #[inline]
            fn try_apply_keystream(&mut self, mut data: &mut [u8])
                -> Result<(), LoopError>
            {
                self.check_data_len(data)?;
                let bs = BLOCK_SIZE;
                let pos = self.pos as usize;
                debug_assert!(bs > pos);

                if pos != 0 {
                    if data.len() < bs - pos {
                        let n = pos + data.len();
                        xor(data, &self.block[pos..n]);
                        self.pos = n as u8;
                        return Ok(());
                    } else {
                        let (l, r) = data.split_at_mut(bs - pos);
                        data = r;
                        xor(l, &self.block[pos..]);
                        self.ctr = inc_be(self.ctr);
                    }
                }

                let mut chunks = data.chunks_exact_mut(PAR_BLOCKS_SIZE);
                for chunk in &mut chunks {
                    xor_block8(chunk, self.next_block8());
                }
                data = chunks.into_remainder();

                let mut chunks = data.chunks_exact_mut(bs);
                for chunk in &mut chunks {
                    let block = self.next_block();

                    unsafe {
                        let t = _mm_loadu_si128(chunk.as_ptr() as *const __m128i);
                        let res = _mm_xor_si128(block, t);
                        _mm_storeu_si128(chunk.as_mut_ptr() as *mut __m128i, res);
                    }
                }

                let rem = chunks.into_remainder();
                self.pos = rem.len() as u8;
                if !rem.is_empty() {
                    self.gen_block();
                    for (a, b) in rem.iter_mut().zip(&self.block) {
                        *a ^= *b;
                    }
                }

                Ok(())
            }
        }

        impl SyncStreamCipherSeek for $name {
            fn try_current_pos<T: SeekNum>(&self) -> Result<T, OverflowError> {
                T::from_block_byte(self.get_u64_ctr(), self.pos, BLOCK_SIZE as u8)
            }

            fn try_seek<T: SeekNum>(&mut self, pos: T) -> Result<(), LoopError> {
                let res: (u64, u8) = pos.to_block_byte(BLOCK_SIZE as u8)?;
                self.ctr = unsafe {
                    _mm_add_epi64(self.nonce, _mm_set_epi64x(res.0 as i64, 0))
                };
                self.pos = res.1;
                if self.pos != 0 {
                    self.gen_block()
                }
                Ok(())
            }
        }

        opaque_debug::implement!($name);
    }
}

impl_ctr!(Aes128Ctr, Aes128, "AES-128 in CTR mode");
impl_ctr!(Aes192Ctr, Aes192, "AES-192 in CTR mode");
impl_ctr!(Aes256Ctr, Aes256, "AES-256 in CTR mode");