1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
//! Strongly-typed, compile-time autodifferentiation in Rust.
//!
//! `aegir` is an experimental autodifferentiation framework designed to
//! leverage the powerful type-system in Rust and _avoid runtime as much as
//! humanly possible_. The approach taken resembles that of expression
//! templates, as commonly used in linear-algebra libraries written in C++, and
//! indeed mirrors (in many ways) the concept of [Iterator] in [std].
//!
//! A key distinction of `aegir` from existing autodiff frameworks is that it
//! does not rely on a monolithic `Tensor` type that handles shape
//! transformations at runtime. This would be equivalent to using the ndarray
//! crate to handle all numerical computations and data-storage/layouts. While
//! this has its advantages - like simplicity and ease of use - our approach is
//! a strict generalisation and allows for much greater flexibility. By
//! incorporating both dynamic and fixed-size data structures, we also
//! have the advantage of the various compile-time optimisations that come from
//! using arrays, tuples, and scalars.
//!
//! # Key Features
//! - Built-in arithmetic, linear-algebraic, trigonometric and special
//!   operators.
//! - Infinitely differentiable: _Jacobian, Hessian, etc..._
//! - Decoupled/generic tensor type.
//! - Monadic runtime optimisation.
//! - Custom DSL for operator expansion.
#![warn(missing_docs)]

#[allow(unused_imports)]
#[macro_use]
extern crate aegir_derive;
#[doc(hidden)]
pub use self::aegir_derive::*;

#[allow(unused_imports)]
#[macro_use]
extern crate aegir_compile;
#[doc(hidden)]
pub use self::aegir_compile::*;

#[allow(unused_imports)]
use paste::paste;

#[macro_use]
extern crate itertools;

pub mod errors;
use errors::*;

/// Interface for type-level identifiers.
///
/// This trait should be implemented for symbols that are used to label variable/meta nodes (see
/// [meta]). For example, one might define `X` and `Y` for use in regression models, or `W` to
/// denote weights.  To make life easier, we define a large set of "standard" identifiers in the
/// [ids](ids/index.html) module.
///
/// Implementation of this trait is mostly uncomplicated, but can be cumbersome. In particular, the
/// [VariableAdjoint](meta::VariableAdjoint) type relies on `PartialEq` being implemented for the
/// two identifiers `I` and `T`. The procedural macro [ids!] is provided to make this simpler
/// should you want to define a custom type.
pub trait Identifier: Copy + PartialEq + Eq + std::fmt::Debug + std::fmt::Display {
    /// Convert the identifier into a [Variable](meta::Variable).
    fn into_var(self) -> meta::Variable<Self> { meta::Variable(self) }
}

pub mod ids {
    //! Quality-of-life shortcuts for commonly-used identifiers.
    ids!(
        // Latin alphabet:
        A::a, B::b, C::c, D::d, E::e, F::f, G::g, H::h, I::i,
        J::j, K::k, L::l, M::m, N::n, O::o, P::p, Q::q, R::r,
        S::s, T::t, U::u, V::v, W::w, X::x, Y::y, Z::z,

        // Greek alphabet:
        Alpha::"\u{03B1}", Beta::"\u{03B2}", Gamma::"\u{03B3}", Delta::"\u{03B4}",
        Epsilon::"\u{03B5}", Zeta::"\u{03B6}", Eta::"\u{03B7}", Theta::"\u{03B8}",
        Iota::"\u{03B9}", Kappa::"\u{03BA}", Lambda::"\u{03BB}", Mu::"\u{03BC}",
        Nu::"\u{03BD}", Xi::"\u{03BE}", Omicron::"\u{03BF}", Pi::"\u{03C0}",
        Rho::"\u{03C1}", Sigma::"\u{03C2}", Tau::"\u{03C3}", Upsilon::"\u{03C4}",
        Phi::"\u{03C6}", Chi::"\u{03C7}", Psi::"\u{03C8}", Omega::"\u{03C9}"
    );
}

/// Trait for types that store data [buffers](buffers::Buffer).
pub trait Context: AsRef<Self> {}

/// Trait for reading entries out of a [Context].
pub trait Read<I: Identifier>: Context {
    /// The buffer type associated with the identifier `I`.
    type Buffer: buffers::Buffer;

    /// Returns a copy of the value associated with `ident`, if it exists.
    fn read(&self, ident: I) -> Option<Self::Buffer>;

    /// Returns a specification of the value associated with `ident`, if it exists.
    fn read_spec(&self, ident: I) -> Option<buffers::Spec<Self::Buffer>> {
        self.read(ident).map(buffers::Spec::Raw)
    }

    /// Returns the shape of the value associated with `ident`, if it exists.
    fn read_shape(&self, ident: I) -> Option<buffers::shapes::ShapeOf<Self::Buffer>> {
        use buffers::shapes::Shaped;

        self.read(ident).map(|buf| buf.shape())
    }
}

/// Helper macro for defining simple, auto-magical [Context] types.
#[macro_export]
macro_rules! ctx_type {
    ($name:ident { $($buf_name:ident: $buf_ident:ident),+ }) => {
        paste! {
            #[derive(Context)]
            pub struct $name<$([<__ $buf_ident>]),+> {
                $(#[id($buf_ident)] pub $buf_name: [<__ $buf_ident>]),+
            }
        }
    }
}

/// Helper macro for creating anonymous [Context] types.
#[macro_export]
macro_rules! ctx {
    ($($key:ident = $value:expr),+) => {{
        paste! {
            ctx_type!(Ctx { $([<_ $key:lower>]: $key),+ });

            Ctx {
                $([<_ $key:lower>]: $value),+
            }
        }
    }}
}

/// Base trait for operator nodes.
pub trait Node {
    fn add<N: Node>(self, other: N) -> ops::Add<Self, N>
    where
        Self: Sized,
    {
        ops::Add(self, other)
    }

    fn sub<N: Node>(self, other: N) -> ops::Sub<Self, N>
    where
        Self: Sized,
    {
        ops::Sub(self, other)
    }

    fn mul<N: Node>(self, other: N) -> ops::Mul<Self, N>
    where
        Self: Sized,
    {
        ops::Mul(self, other)
    }

    fn div<N: Node>(self, other: N) -> ops::Div<Self, N>
    where
        Self: Sized,
    {
        ops::Div(self, other)
    }

    fn dot<N: Node>(self, other: N) -> ops::TensorDot<Self, N>
    where
        Self: Sized,
    {
        ops::Contract(self, other)
    }

    fn abs(self) -> ops::Abs<Self>
    where
        Self: Sized,
    {
        ops::Abs(self)
    }

    fn neg(self) -> ops::Negate<Self>
    where
        Self: Sized,
    {
        ops::Negate(self)
    }

    fn pow<P>(self, power: P) -> ops::Power<Self, P>
    where
        Self: Sized,
    {
        ops::Power(self, power)
    }

    fn ln(self) -> ops::Ln<Self>
    where
        Self: Sized,
    {
        ops::Ln(self)
    }

    fn squared(self) -> ops::Square<Self>
    where
        Self: Sized,
    {
        ops::Square(self)
    }

    fn sum(self) -> ops::Sum<Self>
    where
        Self: Sized,
    {
        ops::Sum(self)
    }

    fn sigmoid(self) -> ops::Sigmoid<Self>
    where
        Self: Sized,
    {
        ops::Sigmoid(self)
    }
}

/// Trait for operator [Nodes](Node) that can assert their symbolic contents.
pub trait Contains<T: Identifier>: Node {
    /// Returns true if the identifier is present in the expression.
    fn contains(&self, ident: T) -> bool;
}

/// Trait for operator [Nodes](Node) that can be evaluated against a [Context].
pub trait Function<C: Context>: Node {
    /// The codomain of the function.
    type Value: buffers::Buffer;

    /// The error type of the function.
    type Error: std::error::Error;

    /// Evaluate the function and return its [Value](Function::Value).
    ///
    /// # Examples
    ///
    /// ```
    /// # #[macro_use] extern crate aegir;
    /// # use aegir::{Identifier, Function, ids::X};
    /// let x = X.into_var();
    ///
    /// assert_eq!(x.evaluate(ctx!{X = 1.0}).unwrap(), 1.0);
    /// ```
    fn evaluate<CR: AsRef<C>>(&self, ctx: CR) -> AegirResult<Self, C>;

    /// Evaluate the function and return its lifted [Value](Function::Value).
    ///
    /// # Examples
    ///
    /// ```
    /// # #[macro_use] extern crate aegir;
    /// # use aegir::{Identifier, Function, Differentiable, buffers::{Spec, shapes::S2}, ids::X};
    /// let x = X.into_var().adjoint(X);
    /// let jx = X.into_var().adjoint(X);
    ///
    /// assert_eq!(jx.evaluate_spec(ctx!{X = [1.0, 2.0]}).unwrap(), Spec::Diagonal(S2, 1.0));
    /// ```
    fn evaluate_spec<CR: AsRef<C>>(
        &self,
        ctx: CR,
    ) -> Result<buffers::Spec<Self::Value>, Self::Error> {
        self.evaluate(ctx).map(buffers::Spec::Raw)
    }

    /// Evaluate the function and return the shape of the
    /// [Value](Function::Value).
    ///
    /// __Note:__ by default, this method performs a full evaluation and calls
    /// the shape method on the buffer. This should be overridden in your
    /// implementation for better efficiency.
    fn evaluate_shape<CR: AsRef<C>>(
        &self,
        ctx: CR,
    ) -> Result<buffers::shapes::ShapeOf<Self::Value>, Self::Error> {
        self.evaluate(ctx)
            .map(|ref buf| buffers::shapes::Shaped::shape(buf))
    }
}

/// Trait for operator [Nodes](Node) with a well-defined adjoint.
pub trait Differentiable<T: Identifier>: Node {
    /// The adjoint operator; i.e. the gradient.
    type Adjoint: Node;

    /// Transform the node into its [Adjoint](Differentiable::Adjoint) operator
    /// tree.
    ///
    /// This is the key method used to perform differentiation in `aegir`. For a
    /// given node, the derivative can be found by first computing the
    /// adjoint tree and then evaluating against a database as per
    /// [Function].
    ///
    /// # Examples
    /// ```
    /// # #[macro_use] extern crate aegir;
    /// # use aegir::{Node, Identifier, Differentiable, Function, buffers::Buffer, ids::X};
    /// let c = 2.0f64.into_constant();
    /// let grad = X.into_var().mul(c).adjoint(X);
    ///
    /// assert_eq!(grad.evaluate(ctx!{X = 10.0}).unwrap(), 2.0);
    /// ```
    fn adjoint(&self, target: T) -> Self::Adjoint;

    /// Helper method that computes the adjoint and evaluates its value.
    ///
    /// __Note:__ this method can be more efficient than explicitly solving for
    /// the adjoint tree. In particular, this method can be implemented
    /// using direct numerical calculations.
    fn evaluate_adjoint<C: Context, CR: AsRef<C>>(
        &self,
        target: T,
        ctx: CR,
    ) -> AegirResult<Self::Adjoint, C>
    where
        Self: Function<C>,
        Self::Adjoint: Function<C>,
    {
        self.adjoint(target).evaluate(ctx)
    }

    /// Helper method that evaluates the function and its adjoint, wrapping up
    /// in a [Dual].
    fn evaluate_dual<C: Context, CR: AsRef<C>>(
        &self,
        target: T,
        ctx: CR,
    ) -> Result<
        DualOf<Self, C, T>,
        BinaryError<Self::Error, <AdjointOf<Self, T> as Function<C>>::Error, NoError>,
    >
    where
        Self: Function<C>,
        Self::Adjoint: Function<C>,
    {
        let value = self.evaluate(&ctx).map_err(BinaryError::Left)?;
        let adjoint = self.evaluate_adjoint(target, ctx).map_err(BinaryError::Right)?;

        Ok(dual!(value, adjoint))
    }
}

/// Alias for the error type associated with a function.
pub type ErrorOf<F, C> = <F as Function<C>>::Error;

/// Alias for the value type associated with a function.
pub type ValueOf<F, C> = <F as Function<C>>::Value;

/// Alias for the result type associated with a function.
pub type AegirResult<F, C> = Result<ValueOf<F, C>, ErrorOf<F, C>>;

/// Alias for the adjoint of a function.
pub type AdjointOf<F, T> = <F as Differentiable<T>>::Adjoint;

/// Alias for the dual associated with a function.
pub type DualOf<F, C, T> = Dual<ValueOf<F, C>, ValueOf<AdjointOf<F, T>, C>>;

extern crate self as aegir;

mod dual;
pub use self::dual::Dual;

pub mod fmt;
pub mod buffers;
pub mod meta;
pub mod ops;