1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
//! # Tree-Memory-Sort
//!
//! An in-memory topological sort algorithm for trees based on Group Theory
//!
//! ### Design
//!
//! This algorithm uses in-memory swapping directly on the array which nodes are stored.
//! Since swap operations satisfy the axioms of Group Theory,
//! the topological sort can be made more efficient by using a group generator.
//!
//! A group generator is an array which stores an index for every node index.
//! When swap operations are performed on the array instead of the data,
//! it is possible to predict where nodes will be stored in the solution
//! without changing the meaning of the current node indices.
//!
//! Once a solution has been found, the group generator can be used to
//! retrace the swapping operations required to order the tree.
//!
//! The order which swaps are retraced might be different than the solving phase:
//!
//! ```text
//! `a, b, c` => `a, (c, b)` => `(c, a), b` => `c, a, b` (solving phase)
//! `c, a, b` => `(b), a, (c)` => `(a, b), c` => `a, b, c` (retrace phase)
//! ```
//!
//!
//! ### Primes example
//!
//! This example shows how the algorithm works using some simple numbers.
//!
//! Assume that you have two equations:
//!
//! ```text
//!    12 = 2 * 6
//!    6 = 3 * 2
//! ```
//!
//! If you arrange these equations as a tree,
//! you will naturally start at the top `12` and list
//! children of each node in the same order as in the equations.
//!
//! When using an automated theorem prover that re-writes
//! a tree like this, it can get messy.
//! Some algorithms relies on a well-ordered tree to perform efficiently.
//!
//! By performing topological sort on the tree,
//! it can be restored to a well-ordered form:
//!
//! ```text
//!     Tree            i       i'
//!     --------------------------
//!     12              3   =>  0
//!     |- 2            2   =>  1
//!     |- 6            1   =>  2
//!        |- 3         4   =>  3
//!        |- 2         0   =>  4
//! ```
//!
//! The algorithm does not change the relative connections inside the tree,
//! just how nodes are stored in memory.
//! However, it needs to change the indices such they point to the correct nodes.
//!
//! Source code:
//!
//! ```rust
//! extern crate tree_mem_sort;
//!
//! use tree_mem_sort::sort;
//!
//! #[derive(Debug)]
//! pub struct Number {
//!     /// The value of the number.
//!     pub value: u32,
//!     /// Which number this was factored from.
//!     pub parent: Option<usize>,
//!     /// Prime factors.
//!     pub children: Vec<usize>,
//! }
//!
//! fn main() {
//!     let mut nodes = vec![
//!         Number {value: 2, parent: Some(1), children: vec![]},       // 0
//!         Number {value: 6, parent: Some(0), children: vec![4, 0]},   // 1
//!         Number {value: 2, parent: Some(2), children: vec![]},       // 2
//!         Number {value: 12, parent: None, children: vec![2, 1]},     // 3
//!         Number {value: 3, parent: Some(2), children: vec![]},       // 4
//!     ];
//!     for i in 0..nodes.len() {
//!         println!("{}: {:?}", i, nodes[i]);
//!     }
//!     // Prints `[2, 6, 2, 12, 3]`
//!     println!("{:?}", nodes.iter().map(|n| n.value).collect::<Vec<u32>>());
//!
//!     sort(&mut nodes, |n| &mut n.parent, |n| &mut n.children);
//!     println!("");
//!     for i in 0..nodes.len() {
//!         println!("{}: {:?}", i, nodes[i]);
//!     }
//!     // Prints `[12, 2, 6, 3, 2]`
//!     println!("{:?}", nodes.iter().map(|n| n.value).collect::<Vec<u32>>());
//! }
//! ```
//!
//! ### Limitations
//!
//! The algorithm assumes that each node is referenced by maximum one parent.
//! If you share nodes between parent nodes, the algorithm might enter an infinite loop.

#![deny(missing_docs)]

/// Performs in-memory topological sort on a tree where
/// order is determined by every child being greater than their parent,
/// and every sibling being greater than previous siblings.
pub fn sort<T, P, C>(nodes: &mut [T], parent: P, children: C)
    where P: Fn(&mut T) -> &mut Option<usize>,
          C: Fn(&mut T) -> &mut [usize]
{
    // This problem can be solving efficiently using Group Theory.
    // This avoid the need for cloning nodes into a new array,
    // while performing the minimum work to get a normalized tree.
    //
    // Create a group generator that is modified by swapping to find a solution.
    // The group generator keeps track of indices, such that child-parent relations
    // do not have to change until later.
    //
    // Use the order in the generator to detect whether a swap has been performed.
    // The condition for swapping `a, b` is `gen[a] > gen[b]`.
    let mut gen: Vec<usize> = (0..nodes.len()).collect();
    loop {
        let mut changed = false;
        for i in 0..nodes.len() {
            let children = children(&mut nodes[i]);
            for j in 0..children.len() {
                let a = children[j];
                // Store child after its parent.
                if gen[i] > gen[a] {
                    gen.swap(i, a);
                    changed = true;
                }
                // Check all pairs of children.
                for k in j+1..children.len() {
                    let b = children[k];

                    // Store children in sorted order.
                    if gen[a] > gen[b] {
                        gen.swap(a, b);
                        changed = true;
                    }
                }
            }
        }
        if !changed {break}
    }

    // Update the tree data with the new indices from the generator.
    // Do this before performing the actual swapping,
    // since the generator maps from old indices to new indices.
    for i in 0..nodes.len() {
        let p = parent(&mut nodes[i]);
        *p = p.map(|p| gen[p]);
        for ch in children(&mut nodes[i]) {*ch = gen[*ch]}
    }

    // Swap nodes using the group generator as guide.
    // When swapping has been performed, update the generator to keep track of state.
    // This is because multiple swaps sharing elements might require multiple steps.
    //
    // The order which swaps are retraced might be different than the solving phase:
    //
    // `a, b, c` => `a, (c, b)` => `(c, a), b` => `c, a, b` (solving phase)
    // `c, a, b` => `(b), a, (c)` => `(a, b), c` => `a, b, c` (retrace phase)
    //
    // However, since the generator solution is produced by swapping operations,
    // it is guaranteed to be restorable to the identity generator when retracing.
    //
    // There is no need to loop more than once because each index is stored uniquely by lookup,
    // such that if `g[i] = i` then there exists no `j != i` such that `g[j] = i`.
    for i in 0..nodes.len() {
        while gen[i] != i {
            let j = gen[i];
            nodes.swap(i, j);
            gen.swap(i, j);
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[derive(PartialEq, Debug)]
    struct Node {
        val: u32,
        parent: Option<usize>,
        children: Vec<usize>,
    }

    #[test]
    fn empty() {
        let mut nodes: Vec<Node> = vec![];
        sort(&mut nodes, |n| &mut n.parent, |n| &mut n.children);
        assert_eq!(nodes.len(), 0);
    }

    #[test]
    fn one() {
        let mut nodes: Vec<Node> = vec![
            Node {val: 0, parent: None, children: vec![]}
        ];
        sort(&mut nodes, |n| &mut n.parent, |n| &mut n.children);
        assert_eq!(nodes, vec![
            Node {val: 0, parent: None, children: vec![]}
        ]);
    }

    #[test]
    fn two() {
        let mut nodes: Vec<Node> = vec![
            Node {val: 0, parent: None, children: vec![]},
            Node {val: 1, parent: None, children: vec![]},
        ];
        sort(&mut nodes, |n| &mut n.parent, |n| &mut n.children);
        assert_eq!(nodes, vec![
            Node {val: 0, parent: None, children: vec![]},
            Node {val: 1, parent: None, children: vec![]},
        ]);

        let mut nodes: Vec<Node> = vec![
            Node {val: 1, parent: Some(1), children: vec![]},
            Node {val: 0, parent: None, children: vec![0]},
        ];
        sort(&mut nodes, |n| &mut n.parent, |n| &mut n.children);
        assert_eq!(nodes, vec![
            Node {val: 0, parent: None, children: vec![1]},
            Node {val: 1, parent: Some(0), children: vec![]},
        ]);
    }

    #[test]
    fn three() {
        let mut nodes: Vec<Node> = vec![
            Node {val: 2, parent: Some(1), children: vec![]},
            Node {val: 1, parent: Some(2), children: vec![0]},
            Node {val: 0, parent: None, children: vec![1]},
        ];
        sort(&mut nodes, |n| &mut n.parent, |n| &mut n.children);
        assert_eq!(nodes, vec![
            Node { val: 0, parent: None, children: vec![1] },
            Node { val: 1, parent: Some(0), children: vec![2] },
            Node { val: 2, parent: Some(1), children: vec![] }
        ]);

        let mut nodes: Vec<Node> = vec![
            Node {val: 1, parent: Some(2), children: vec![1]},
            Node {val: 2, parent: Some(0), children: vec![]},
            Node {val: 0, parent: None, children: vec![0]},
        ];
        sort(&mut nodes, |n| &mut n.parent, |n| &mut n.children);
        assert_eq!(nodes, vec![
            Node { val: 0, parent: None, children: vec![1] },
            Node { val: 1, parent: Some(0), children: vec![2] },
            Node { val: 2, parent: Some(1), children: vec![] }
        ]);

        let mut nodes: Vec<Node> = vec![
            Node {val: 2, parent: Some(2), children: vec![]},
            Node {val: 1, parent: Some(2), children: vec![]},
            Node {val: 0, parent: None, children: vec![1, 0]},
        ];
        sort(&mut nodes, |n| &mut n.parent, |n| &mut n.children);
        assert_eq!(nodes, vec![
            Node { val: 0, parent: None, children: vec![1, 2] },
            Node { val: 1, parent: Some(0), children: vec![] },
            Node { val: 2, parent: Some(0), children: vec![] }
        ]);

        let mut nodes: Vec<Node> = vec![
            Node {val: 1, parent: Some(2), children: vec![]},
            Node {val: 2, parent: Some(2), children: vec![]},
            Node {val: 0, parent: None, children: vec![0, 1]},
        ];
        sort(&mut nodes, |n| &mut n.parent, |n| &mut n.children);
        assert_eq!(nodes, vec![
            Node { val: 0, parent: None, children: vec![1, 2] },
            Node { val: 1, parent: Some(0), children: vec![] },
            Node { val: 2, parent: Some(0), children: vec![] }
        ]);

        let mut nodes: Vec<Node> = vec![
            Node {val: 1, parent: Some(1), children: vec![]},
            Node {val: 0, parent: None, children: vec![0, 2]},
            Node {val: 2, parent: Some(1), children: vec![]},
        ];
        sort(&mut nodes, |n| &mut n.parent, |n| &mut n.children);
        assert_eq!(nodes, vec![
            Node { val: 0, parent: None, children: vec![1, 2] },
            Node { val: 1, parent: Some(0), children: vec![] },
            Node { val: 2, parent: Some(0), children: vec![] }
        ]);

        let mut nodes: Vec<Node> = vec![
            Node {val: 2, parent: Some(1), children: vec![]},
            Node {val: 0, parent: None, children: vec![2, 0]},
            Node {val: 1, parent: Some(1), children: vec![]},
        ];
        sort(&mut nodes, |n| &mut n.parent, |n| &mut n.children);
        assert_eq!(nodes, vec![
            Node { val: 0, parent: None, children: vec![1, 2] },
            Node { val: 1, parent: Some(0), children: vec![] },
            Node { val: 2, parent: Some(0), children: vec![] }
        ]);
    }

    #[test]
    fn four() {
        let mut nodes: Vec<Node> = vec![
            Node {val: 3, parent: Some(1), children: vec![]},
            Node {val: 2, parent: Some(2), children: vec![0]},
            Node {val: 1, parent: Some(3), children: vec![1]},
            Node {val: 0, parent: None, children: vec![2]},
        ];
        sort(&mut nodes, |n| &mut n.parent, |n| &mut n.children);
        assert_eq!(nodes, vec![
            Node { val: 0, parent: None, children: vec![1] },
            Node { val: 1, parent: Some(0), children: vec![2] },
            Node { val: 2, parent: Some(1), children: vec![3] },
            Node { val: 3, parent: Some(2), children: vec![] }
        ]);

        let mut nodes: Vec<Node> = vec![
            Node {val: 2, parent: Some(2), children: vec![1]},
            Node {val: 3, parent: Some(0), children: vec![]},
            Node {val: 1, parent: Some(3), children: vec![0]},
            Node {val: 0, parent: None, children: vec![2]},
        ];
        sort(&mut nodes, |n| &mut n.parent, |n| &mut n.children);
        assert_eq!(nodes, vec![
            Node { val: 0, parent: None, children: vec![1] },
            Node { val: 1, parent: Some(0), children: vec![2] },
            Node { val: 2, parent: Some(1), children: vec![3] },
            Node { val: 3, parent: Some(2), children: vec![] }
        ]);

        let mut nodes: Vec<Node> = vec![
            Node {val: 2, parent: Some(3), children: vec![1]},
            Node {val: 3, parent: Some(0), children: vec![]},
            Node {val: 0, parent: None, children: vec![3]},
            Node {val: 1, parent: Some(2), children: vec![0]},
        ];
        sort(&mut nodes, |n| &mut n.parent, |n| &mut n.children);
        assert_eq!(nodes, vec![
            Node { val: 0, parent: None, children: vec![1] },
            Node { val: 1, parent: Some(0), children: vec![2] },
            Node { val: 2, parent: Some(1), children: vec![3] },
            Node { val: 3, parent: Some(2), children: vec![] }
        ]);

        let mut nodes: Vec<Node> = vec![
            Node {val: 2, parent: Some(2), children: vec![]},
            Node {val: 3, parent: Some(3), children: vec![]},
            Node {val: 1, parent: Some(3), children: vec![0]},
            Node {val: 0, parent: None, children: vec![2, 1]},
        ];
        sort(&mut nodes, |n| &mut n.parent, |n| &mut n.children);
        assert_eq!(nodes, vec![
            Node { val: 0, parent: None, children: vec![1, 3] },
            Node { val: 1, parent: Some(0), children: vec![2] },
            Node { val: 2, parent: Some(1), children: vec![] },
            Node { val: 3, parent: Some(0), children: vec![] }
        ]);

        let mut nodes: Vec<Node> = vec![
            Node {val: 3, parent: Some(3), children: vec![]},
            Node {val: 1, parent: None, children: vec![]},
            Node {val: 2, parent: Some(3), children: vec![]},
            Node {val: 0, parent: None, children: vec![2, 0]},
        ];
        sort(&mut nodes, |n| &mut n.parent, |n| &mut n.children);
        assert_eq!(nodes, vec![
            Node { val: 0, parent: None, children: vec![2, 3] },
            Node { val: 1, parent: None, children: vec![] },
            Node { val: 2, parent: Some(0), children: vec![] },
            Node { val: 3, parent: Some(0), children: vec![] }
        ]);

        let mut nodes: Vec<Node> = vec![
            Node {val: 3, parent: Some(2), children: vec![]},
            Node {val: 2, parent: Some(2), children: vec![]},
            Node {val: 1, parent: Some(3), children: vec![1, 0]},
            Node {val: 0, parent: None, children: vec![2]},
        ];
        sort(&mut nodes, |n| &mut n.parent, |n| &mut n.children);
        assert_eq!(nodes, vec![
            Node { val: 0, parent: None, children: vec![1] },
            Node { val: 1, parent: Some(0), children: vec![2, 3] },
            Node { val: 2, parent: Some(1), children: vec![] },
            Node { val: 3, parent: Some(1), children: vec![] }
        ]);

        let mut nodes: Vec<Node> = vec![
            Node {val: 0, parent: None, children: vec![3, 2]},
            Node {val: 2, parent: Some(3), children: vec![]},
            Node {val: 3, parent: Some(0), children: vec![]},
            Node {val: 1, parent: Some(0), children: vec![1]},
        ];
        sort(&mut nodes, |n| &mut n.parent, |n| &mut n.children);
        assert_eq!(nodes, vec![
            Node { val: 0, parent: None, children: vec![1, 3] },
            Node { val: 1, parent: Some(0), children: vec![2] },
            Node { val: 2, parent: Some(1), children: vec![] },
            Node { val: 3, parent: Some(0), children: vec![] },
        ]);
    }
}