1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
use std::f64::consts::PI;

pub type Vector2 = nalgebra::Vector2<f64>;

const TAU: f64 = 2.0 * PI;

const RECUSION_LIMIT: u32 = 8;
const FLOAT_EPSILON: f64 = 1.19209290e-7;
const PATH_DISTANCE_EPSILON: f64 = 1.0;

const CURVE_ANGLE_TOERANCE_EPSILON: f64 = 0.01;
const M_ANGLE_TOLERANCE: f64 = 0.0;
const M_CUSP_LIMIT: f64 = 0.0;

#[inline]
fn clamp_angle(x: f64) -> f64 {
    if x >= PI {
        TAU - x
    } else {
        x
    }
}

pub fn adaptive_bezier_curve(
    start: Vector2,
    c1: Vector2,
    c2: Vector2,
    end: Vector2,
    scale: f64,
) -> Vec<Vector2> {
    let distance_tolerance = (PATH_DISTANCE_EPSILON / scale).powi(2);
    let mut sample_points = Vec::new();
    sample_points.push(start);
    adaptive_bezier_curve_impl(
        start,
        c1,
        c2,
        end,
        &mut sample_points,
        distance_tolerance,
        0,
    );
    sample_points.push(end);
    sample_points
}

pub fn adaptive_bezier_curve_impl(
    p1: Vector2,
    p2: Vector2,
    p3: Vector2,
    p4: Vector2,
    points: &mut Vec<Vector2>,
    distance_tolerance: f64,
    level: u32,
) {
    if level > RECUSION_LIMIT {
        return;
    }
    let p12 = (p1 + p2) / 2.0;
    let p23 = (p2 + p3) / 2.0;
    let p34 = (p3 + p4) / 2.0;
    let p123 = (p12 + p23) / 2.0;
    let p234 = (p23 + p34) / 2.0;
    let p1234 = (p123 + p234) / 2.0;
    if level > 0 {
        // Enforce subdivision first time
        // Try to approximate the full cubic curve by a single straight line
        let d = p4 - p1;
        let d2 = (p2 - p4).perp(&d).abs();
        let d3 = (p3 - p4).perp(&d).abs();
        if d2 > FLOAT_EPSILON && d3 > FLOAT_EPSILON {
            // Regular care
            if (d2 + d3).powi(2) <= distance_tolerance * d.norm_squared() {
                // If the curvature doesn't exceed the distanceTolerance value
                // we tend to finish subdivisions
                if M_ANGLE_TOLERANCE < CURVE_ANGLE_TOERANCE_EPSILON {
                    points.push(p1234);
                    return;
                }
                // Angle & cusp condition
                // TODO: replace here with angle
                let a23 = (p3.y - p2.y).atan2(p3.x - p2.x);
                let da1 = clamp_angle((a23 - (p2.y - p1.y).atan2(p2.x - p1.x)).abs());
                let da2 = clamp_angle(((p4.y - p3.y).atan2(p4.x - p3.x) - a23).abs());
                if da1 + da2 < M_ANGLE_TOLERANCE {
                    // Finally we can stop the recursion
                    points.push(p1234);
                    return;
                }
                if M_CUSP_LIMIT != 0.0 {
                    if da1 > M_CUSP_LIMIT {
                        points.push(p2);
                        return;
                    }
                    if da2 > M_CUSP_LIMIT {
                        points.push(p3);
                        return;
                    }
                }
            }
        } else if d2 > FLOAT_EPSILON {
            // P_1, P_3, P_4 are collinear, P_2 is considerable
            if d2 * d2 <= distance_tolerance * d.norm_squared() {
                if M_ANGLE_TOLERANCE < CURVE_ANGLE_TOERANCE_EPSILON {
                    points.push(p1234);
                    return;
                }
                // Angle condition
                let da1 = clamp_angle(
                    ((p3.y - p2.y).atan2(p3.x - p2.x) - (p2.y - p1.y).atan2(p2.x - p1.x)).abs(),
                );
                if da1 < M_ANGLE_TOLERANCE {
                    points.push(p2);
                    points.push(p3);
                    return;
                }
                if M_CUSP_LIMIT != 0.0 && da1 > M_CUSP_LIMIT {
                    points.push(p2);
                    return;
                }
            }
        } else if d3 > FLOAT_EPSILON {
            // P_1, P_2, P_4 are collinear, P_3 is considerable
            if d3 * d3 <= distance_tolerance * d.norm_squared() {
                if M_ANGLE_TOLERANCE < CURVE_ANGLE_TOERANCE_EPSILON {
                    points.push(p1234);
                    return;
                }
                // Angle condition
                let da1 = clamp_angle(
                    ((p4.y - p3.y).atan2(p4.x - p3.x) - (p3.y - p2.y).atan2(p3.x - p2.x)).abs(),
                );
                if da1 < M_ANGLE_TOLERANCE {
                    points.push(p2);
                    points.push(p3);
                    return;
                }
                if M_CUSP_LIMIT != 0.0 && da1 > M_CUSP_LIMIT {
                    points.push(p3);
                    return;
                }
            }
        } else {
            // Collinear case
            let d = p1234 - (p1 + p4) / 2.0;
            if d.norm_squared() < distance_tolerance {
                points.push(p1234);
                return;
            }
        }
    }
    // Continue subdivision
    adaptive_bezier_curve_impl(p1, p12, p123, p1234, points, distance_tolerance, level + 1);
    adaptive_bezier_curve_impl(p1234, p234, p34, p4, points, distance_tolerance, level + 1);
}

#[cfg(test)]
mod tests {
    use super::{adaptive_bezier_curve, Vector2, FLOAT_EPSILON};

    #[test]
    fn simple() {
        let answer = vec![
            Vector2::new(20.0, 20.0),
            Vector2::new(27.12921142578125, 32.740386962890625),
            Vector2::new(39.34417724609375, 56.408416748046875),
            Vector2::new(53.46435546875, 87.040771484375),
            Vector2::new(63.99200439453125, 111.28897094726562),
            Vector2::new(69.82025146484375, 123.60739135742188),
            Vector2::new(73.9102554321289, 130.69841384887695),
            Vector2::new(76.61632537841797, 134.36077499389648),
            Vector2::new(79.37641143798828, 137.14487075805664),
            Vector2::new(82.25093841552734, 139.02817916870117),
            Vector2::new(85.30033111572266, 139.98817825317383),
            Vector2::new(88.58501434326172, 140.00234603881836),
            Vector2::new(92.16541290283203, 139.04816055297852),
            Vector2::new(96.1019515991211, 137.10309982299805),
            Vector2::new(100.4550552368164, 134.1446418762207),
            Vector2::new(105.28514862060547, 130.15026473999023),
            Vector2::new(113.55682373046875, 122.16708374023438),
            Vector2::new(126.81915283203125, 107.68692016601562),
            Vector2::new(143.07708740234375, 88.65768432617188),
            Vector2::new(174.13818359375, 51.190185546875),
            Vector2::new(200.0, 20.0),
        ];
        let start = Vector2::new(20.0, 20.0);
        let c1 = Vector2::new(100.0, 159.0);
        let c2 = Vector2::new(50.0, 200.0);
        let end = Vector2::new(200.0, 20.0);
        let scale = 2.0;
        let output = adaptive_bezier_curve(start, c1, c2, end, scale);
        assert_eq!(output.len(), answer.len());
        for i in 0..answer.len() {
            assert_eq!((output[i].x - answer[i].x).abs() < FLOAT_EPSILON, true);
            assert_eq!((output[i].y - answer[i].y).abs() < FLOAT_EPSILON, true);
        }
    }
}