1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
use std::fs;
use std::path;
use std::time;

use crate::utils::*;

/// Different possible battery charging states.
#[derive(Clone, Copy)]
pub enum ChargingState {
    Charging,
    Discharging,
    Full,
}

/// Metadata pertaining to a battery.
pub struct BatteryInfo {
    /// The name used by ACPI to refer to the device.
    pub name: String,
    /// The charge remaining in the battery in units of mAh.
    pub remaining_capacity: u32,
    /// The rate at which the charge of the battery is changing in mA.
    pub present_rate: u32,
    /// The current voltage of the battery in mV.
    pub voltage: u32,
    /// The charge available in the battery at the time of manufacture in units of mAh.
    pub design_capacity: u32,
    /// The charge available in the battery at the last time the device was charged to full in
    /// units of mAh.
    pub last_capacity: u32,
    /// The time remaining until the battery reaches full charge or empty.
    pub time_remaining: time::Duration,
    /// The ratio of the remaining charge to the full charge.
    pub percentage: f32,
    /// The state of the battery's charging.
    pub state: ChargingState,
}

/// Returns a vector of data on power supplies in the system or any errors encountered.
///
/// # Arguments
///
/// * `path` - The path to battery entries produced by the ACPI subsystem.
pub fn get_battery_info(path: &path::Path) -> Result<Vec<BatteryInfo>, AcpiClientError> {
    let mut results: Vec<BatteryInfo> = vec![];

    for entry in fs::read_dir(&path)? {
        let path = entry?.path();
        if determine_is_battery(parse_entry_file(&path.join("type"))?) {
            let ps = BatteryInfo::new(&path);
            if ps.is_ok() {
                results.push(ps?);
            }
        }
    }

    Ok(results)
}

impl BatteryInfo {
    /// Returns a battery corresponding to a given ACPI device path.
    ///
    /// # Arguments
    ///
    /// * `path` - The path to the ACPI device.
    ///
    /// # Example
    /// ```
    /// let directory = std::path::Path::new("/sys/class/power_supply/BAT1");
    /// let ps_info = acpi_client::BatteryInfo::new(&directory);
    /// ```
    pub fn new(path: &path::Path) -> Result<BatteryInfo, AcpiClientError> {
        // Check whether the system reports energy or capacity
        match determine_reporting_type(&path)? {
            ReportType::Capacity => return parse_capacity_supply(&path),
            ReportType::Energy => return parse_energy_supply(&path),
        }
    }
}

/// Parses a battery ACPI device entry which reports capacity in units of mAh.
///
/// # Arguments
///
/// * `path` - The path to the ACPI device.
fn parse_capacity_supply(path: &path::Path) -> Result<BatteryInfo, AcpiClientError> {
    let voltage = parse_file_to_i32(&path.join("voltage_now"), 1000)? as u32;
    let remaining_capacity = parse_file_to_i32(&path.join("charge_now"), 1000)? as u32;
    let present_rate = parse_file_to_i32(&path.join("current_now"), 1000)? as u32;
    let design_capacity = parse_file_to_i32(&path.join("charge_full_design"), 1000)? as u32;
    let last_capacity = parse_file_to_i32(&path.join("charge_full"), 1000)? as u32;
    let state = parse_state_from_str(
        parse_entry_file(&path.join("status"))?
            .trim()
            .to_lowercase(),
    )?;
    let percentage = determine_charge_percentage(remaining_capacity, last_capacity);
    let time_remaining =
        determine_time_to_state_change(remaining_capacity, last_capacity, present_rate, state);
    let name = get_device_name(path)?;

    Ok(BatteryInfo {
        name,
        remaining_capacity: remaining_capacity,
        present_rate: present_rate,
        voltage: voltage,
        design_capacity: design_capacity,
        last_capacity: last_capacity,
        percentage,
        time_remaining,
        state: state,
    })
}

/// Parses a battery ACPI device entry which reports capacity in units of mWh.
///
/// # Arguments
///
/// * `path` - The path to the ACPI device.
fn parse_energy_supply(path: &path::Path) -> Result<BatteryInfo, AcpiClientError> {
    let voltage = parse_file_to_i32(&path.join("voltage_now"), 1000)? as u32;
    let remaining_capacity = parse_file_to_i32(&path.join("energy_now"), 1000)? as u32 / voltage;
    let present_rate = parse_file_to_i32(&path.join("current_now"), 1000)? as u32;
    let design_capacity =
        parse_file_to_i32(&path.join("energy_full_design"), 1000)? as u32 / voltage;
    let last_capacity = parse_file_to_i32(&path.join("energy_full"), 1000)? as u32 / voltage;
    let state = parse_state_from_str(
        parse_entry_file(&path.join("status"))?
            .trim()
            .to_lowercase(),
    )?;
    let percentage = determine_charge_percentage(remaining_capacity, last_capacity);
    let time_remaining =
        determine_time_to_state_change(remaining_capacity, last_capacity, present_rate, state);
    let name = get_device_name(path)?;

    Ok(BatteryInfo {
        name,
        remaining_capacity,
        present_rate,
        voltage,
        design_capacity,
        last_capacity,
        percentage,
        time_remaining,
        state,
    })
}

/// Determines the percentage of full charge from the current charge and the full charge
/// measurements.
///
/// # Arguments
///
/// * `remaining_capacity` - The current charge of the battery in mAh.
/// * `full_capacity` - The full charge of the battery in mAh.
fn determine_charge_percentage(remaining_capacity: u32, full_capacity: u32) -> f32 {
    (remaining_capacity as f32) * 100.0 / (full_capacity as f32)
}

/// Determines the amount of time until the battery finishes charging or until the battery is
/// depleted.
///
/// # Arguments
///
/// * `remaining_capacity` - The current charge of the battery in mAh.
/// * `full_capacity` - The full charge of the battery in mAh.
/// * `present_rate` - The rate at which the current charge is changing in mA.
/// * `state` - Whether the battery is charging or discharging energy.
fn determine_time_to_state_change(
    remaining_capacity: u32,
    full_capacity: u32,
    present_rate: u32,
    state: ChargingState,
) -> time::Duration {
    match state {
        ChargingState::Charging => {
            let seconds = (3600 * (full_capacity - remaining_capacity) / (present_rate + 1)) as u64;
            time::Duration::new(seconds, 0)
        }
        ChargingState::Discharging => {
            let seconds = (3600 * remaining_capacity / (present_rate + 1)) as u64;
            time::Duration::new(seconds, 0)
        }
        _ => time::Duration::new(0, 0),
    }
}

/// Parses a ChargingState value from a string representation.
///
/// # Arguments
///
/// * `state_str` - A trimmed string containing the state read from the battery device's file.
fn parse_state_from_str(state_str: String) -> Result<ChargingState, AcpiClientError> {
    if state_str == "charging" {
        Ok(ChargingState::Charging)
    } else if state_str == "discharging" {
        Ok(ChargingState::Discharging)
    } else if state_str == "full" {
        Ok(ChargingState::Full)
    } else {
        Err(AcpiClientError::InvalidInput(std::io::Error::new(
            std::io::ErrorKind::Other,
            format!("Unrecognized charging state: {}", state_str),
        )))
    }
}

/// An enumeration of different types of units with which the ACPI subsystem reports capacity.
#[derive(Clone)]
enum ReportType {
    Capacity,
    Energy,
}

/// Checks the filesystem to determine if the battery reports capacity or energy
///
/// # Arguments
///
/// * `path` - The path to the ACPI device.
fn determine_reporting_type(path: &path::Path) -> Result<ReportType, AcpiClientError> {
    let capacity_files = vec!["charge_now", "charge_full", "charge_full_design"];
    let energy_files = vec!["energy_now", "energy_full", "energy_full_design"];
    if capacity_files.iter().all(|file| {
        let mut path_buffer = path::Path::new(path).to_path_buf();
        path_buffer.push(file);
        path_buffer.exists()
    }) {
        Ok(ReportType::Capacity)
    } else if energy_files.iter().all(|file| {
        let mut path_buffer = path::Path::new(path).to_path_buf();
        path_buffer.push(file);
        path_buffer.exists()
    }) {
        Ok(ReportType::Energy)
    } else {
        Err(AcpiClientError::InvalidInput(std::io::Error::new(
            std::io::ErrorKind::Other,
            "Unrecognized reporting type.",
        )))
    }
}