```  1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
```
```#![crate_name = "abc"]
#![crate_type = "lib"]
#![doc(html_root_url = "https://daviddonna.github.io/abc-rs/")]

#![warn(missing_docs)]

//! Runs Karaboga's Artificial Bee Colony algorithm in parallel.
//!
//! To take advantage of this crate, the user must implement the
//! [`Solution`](trait.Solution.html) trait for a type of their creation.
//! A [`Hive`](struct.Hive.html) of the appropriate type can then be built,
//! which will search the solution space for the fittest candidate.
//!
//! # Examples
//!
//! ```
//! // ABC algorithm with canonical (proportionate) fitness scaling
//! // to minimize the 10-dimensional Rastrigin function.
//!
//! extern crate abc;
//! extern crate rand;
//!
//! use std::f32::consts::PI;
//! use rand::{random, Closed01, thread_rng, Rng};
//! use abc::{Context, Candidate, HiveBuilder};
//!
//! const SIZE: usize = 10;
//!
//! #[derive(Clone, Debug)]
//! struct S([f32;SIZE]);
//!
//! // Not really necessary; we're using this mostly to demonstrate usage.
//! struct SBuilder {
//!     min: f32,
//!     max: f32,
//!     a: f32,
//!     p_min: f32,
//!     p_max: f32,
//! }
//!
//! impl Context for SBuilder {
//!     type Solution = [f32;SIZE];
//!
//!     fn make(&self) -> [f32;SIZE] {
//!         let mut new = [0.0;SIZE];
//!         for i in 0..SIZE {
//!             let Closed01(x) = random::<Closed01<f32>>();
//!             new[i] = (x * (self.max - self.min)) + self.min;
//!         }
//!         new
//!     }
//!
//!     fn evaluate_fitness(&self, solution: &[f32;10]) -> f64 {
//!         let sum = solution.iter()
//!                           .map(|x| x.powf(2.0) - self.a * (*x * 2.0 * PI).cos())
//!                           .fold(0.0, |total, next| total + next);
//!         let rastrigin = ((self.a * SIZE as f32) + sum) as f64;
//!
//!         // Minimize.
//!         if rastrigin >= 0.0 {
//!             1.0 / (1.0 + rastrigin)
//!         } else {
//!             1.0 + rastrigin.abs()
//!         }
//!     }
//!
//!     fn explore(&self, field: &[Candidate<[f32;SIZE]>], index: usize) -> [f32;SIZE] {
//!         // new[i] = current[i] + Φ * (current[i] - other[i]), where:
//!         //      phi_min <= Φ <= phi_max
//!         //      other is a solution, other than current, chosen at random
//!
//!         let ref current = field[index].solution;
//!         let mut new = [0_f32;SIZE];
//!
//!         for i in 0..SIZE {
//!             // Choose a different vector at random.
//!             let mut rng = thread_rng();
//!             let mut index2 = rng.gen_range(0, current.len() - 1);
//!             if index2 >= index { index2 += 1; }
//!             let ref other = field[index2].solution;
//!
//!             let phi = random::<Closed01<f32>>().0 * (self.p_max - self.p_min) + self.p_min;
//!             new[i] = current[i] + (phi * (current[i] - other[i]));
//!         }
//!
//!         new
//!     }
//! }
//!
//! fn main() {
//!     let mut builder = SBuilder {
//!         min: -5.12,
//!         max: 5.12,
//!         a: 10.0,
//!         p_min: -1.0,
//!         p_max: 1.0
//!     };
//!     let hive_builder = HiveBuilder::new(builder, 10);
//!     let hive = hive_builder.build().unwrap();
//!
//!     // Once built, the hive can be run for a number of rounds.
//!     let best_after_10 = hive.run_for_rounds(10).unwrap();
//!
//!     // As long as it's run some rounds at a time, you can keep running it.
//!     let best_after_20 = hive.run_for_rounds(10).unwrap();
//!
//!     // The algorithm doesn't guarantee improvement in any number of rounds,
//!     // but it always keeps its all-time best.
//!     assert!(best_after_20.fitness >= best_after_10.fitness);
//!
//!     // The hive can be consumed to create a Receiver object. This can be
//!     // iterated over indefinitely, and will receive successive improvements
//!     // on the best candidate so far.
//!     let mut current_best_fitness = best_after_20.fitness;
//!     for new_best in hive.stream().iter().take(3) {
//!         // The iterator will start with the best result so far; after that,
//!         // each new candidate will be an improvement.
//!         assert!(new_best.fitness >= current_best_fitness);
//!         current_best_fitness = new_best.fitness;
//!     }
//! }
//! ```

mod result;