1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
use slab::Slab;
use std::fmt;
use std::ops::{Index, IndexMut};
use std::cmp;
extern crate slab;

impl<T: fmt::Debug + Copy + fmt::Debug> fmt::Debug for BinaryTree<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {

        fn write_recursive<T: fmt::Debug + Copy>(binaryTree: &BinaryTree<T>, node: Pointer, f: &mut fmt::Formatter){
            if node.is_null(){
                write!(f, "").unwrap();
            }
            else{
                write_recursive(binaryTree, binaryTree[node].left, f);
                write!(f, "({:?}), ", binaryTree[node].value).unwrap();
                write_recursive(binaryTree, binaryTree[node].right, f);
            }
        }

        write!(f, "Tree(")?;
        write_recursive(&self, self.root, f);
        write!(f, ")")?;
        
        Ok(())
    }
}

#[derive(Eq, PartialEq, Copy, Clone)]
pub struct Pointer(usize);
impl Pointer {
    #[inline]
    fn null() -> Pointer {
        Pointer(!0)
    }
    
    #[inline]
    fn is_null(&self) -> bool {
        *self == Pointer::null()
    }
}

// Just for convenience, so that we can type `self[i]` instead of `self.slab[i]`.
impl<T> Index<Pointer> for BinaryTree<T> {
    type Output = Node<T>;
    
    fn index(&self, index: Pointer) -> &Node<T> {
        &self.slab[index.0]
    }
}
// Just for convenience, so that we can type `self[i]` instead of `self.slab[i]`.
impl<T> IndexMut<Pointer> for BinaryTree<T> {
    fn index_mut(&mut self, index: Pointer) -> &mut Node<T> {
        &mut self.slab[index.0]
    }
}

pub struct Node<T> {
    pub value: T,
    right: Pointer,
    left: Pointer,
}

pub struct BinaryTree<T> {
    slab: Slab<Node<T>>,
    pub root: Pointer,
}

impl<T: PartialOrd + Copy + fmt::Debug> BinaryTree<T> {
    // Returns a new doubly linked list.
    pub fn new() -> Self {
        BinaryTree {
            slab: Slab::new(),
            root: Pointer::null(),
        }
    }

    // Returns true if tree is empty, false otherwise
    pub fn is_empty(&self) -> bool{
        return self.root.is_null();
    }

    // Returns height of tree
    pub fn get_height(&self) -> u32{
        return self.get_height_from_node(self.root);
    }

    // Returns height below node passed as argument
    pub fn get_height_from_node(&self, node: Pointer) -> u32{
        if node.is_null(){
            return 0;
        }
        else{
            let left = self.get_height_from_node(self[node].left);
            let right = self.get_height_from_node(self[node].right);
            return cmp::max(left, right) + 1;
        }
    }

    // Insert node with value val into tree
    pub fn insert(&mut self, val: T){
        if self.root.is_null(){
            self.root = Pointer(self.slab.insert(Node {
                value: val,
                right: Pointer::null(),
                left: Pointer::null(),
            }));
        }
        else{
            self.insert_below_node(val, self.root);
        }
    }

    pub fn insert_below_node(&mut self, val: T, node: Pointer){
        let nodeValue = self[node].value;
        let left = self[node].left;
        let right = self[node].right;

        if val == nodeValue{
            println!("Duplicate node values");
            return;
        }
        else if val > nodeValue{
            if right.is_null(){
                self[node].right = Pointer(self.slab.insert(Node {
                    value: val,
                    right: Pointer::null(),
                    left: Pointer::null(),
                }));
            }
            else{
                self.insert_below_node(val, right);
            }
        }
        else if val < nodeValue{
            if left.is_null(){
                self[node].left = Pointer(self.slab.insert(Node {
                    value: val,
                    right: Pointer::null(),
                    left: Pointer::null(),
                }));
            }
            else{
                self.insert_below_node(val, left);
            }
        }
    }

    pub fn get_node(&self, val: T) -> Pointer{
        let node = self.get_node_from_node(self.root, val);

        if node.is_null(){
            println!("Node does not exist!");
            return Pointer::null();
        }
        return node;
    }

    pub fn get_node_from_node(&self, node: Pointer, val:T) -> Pointer{
        if node.is_null(){
            return Pointer::null();
        }
        else{
            if self[node].value == val{
                return node;
            }
            else if val > self[node].value{
                return self.get_node_from_node(self[node].right, val);
            }
            else{
                return self.get_node_from_node(self[node].left, val);
            }
        }
    }

    // Return number of leaf nodes is tree
    pub fn count_leaf_nodes(&self) -> u32{
        return self.count_leaf_nodes_from_node(self.root);
    }
    pub fn count_leaf_nodes_from_node(&self, node: Pointer) -> u32{
        if node.is_null(){
            return 0;
        }
        else{
            let left = self.get_height_from_node(self[node].left);
            let right = self.get_height_from_node(self[node].right);
            if left == right && left == 0{
                return 1;
            }
            return left + right;
        }
    }

    // Print tree from left to right
    pub fn print_in_order_traversal(&self){
        println!("{:?}", self);
    }
}