1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
// Our code base is adapted from: https://play.rust-lang.org/?gist=d65d605a48d38648737ad2ae38f46434&version=stable

use slab::Slab;
use std::fmt;
use std::ops::{Index, IndexMut};
use std::cmp;
extern crate slab;

impl<T: fmt::Debug + Copy + fmt::Debug> fmt::Debug for AVLTree<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {

        // recursivley print the tree in an ordered fashion
        fn write_recursive<T: fmt::Debug + Copy>(avltree: &AVLTree<T>, node: Pointer, f: &mut fmt::Formatter){
            if node.is_null(){
                write!(f, "").unwrap();
            }
            else{
                write_recursive(avltree, avltree[node].left, f);
                let left = avltree[node].left;
                let right = avltree[node].right;
                let parent = avltree[node].parent;

                write!(f, "(value = {:?},", avltree[node].value).unwrap();
                
                if left.is_null(){
                    write!(f, "left = NULL, ").unwrap();
                }
                else{
                    write!(f, "left = {:?}, ", avltree[left].value).unwrap();
                }

                if right.is_null(){
                    write!(f, "right = NULL, ").unwrap();
                }
                else{
                    write!(f, "right = {:?}, ", avltree[right].value).unwrap();
                }

                if parent.is_null(){
                    write!(f, "parent = NULL").unwrap();
                }
                else{
                    write!(f, "parent = {:?}", avltree[parent].value).unwrap();
                }

                write!(f, "), \n").unwrap();

                write_recursive(avltree, avltree[node].right, f);

            }
        }

        write!(f, "In order traversal:(\n")?;
        write_recursive(&self, self.root, f);
        write!(f, ")")?;
        
        Ok(())
    }
}

#[derive(Eq, PartialEq, Copy, Clone)]
pub struct Pointer(usize);
impl Pointer {
    #[inline]
    fn null() -> Pointer {
        Pointer(!0)
    }
    
    #[inline]
    fn is_null(&self) -> bool {
        *self == Pointer::null()
    }
}

// Just for convenience, so that we can type `self[i]` instead of `self.slab[i]`.
impl<T> Index<Pointer> for AVLTree<T> {
    type Output = Node<T>;
    
    fn index(&self, index: Pointer) -> &Node<T> {
        &self.slab[index.0]
    }
}
// Just for convenience, so that we can type `self[i]` instead of `self.slab[i]`.
impl<T> IndexMut<Pointer> for AVLTree<T> {
    fn index_mut(&mut self, index: Pointer) -> &mut Node<T> {
        &mut self.slab[index.0]
    }
}

pub struct Node<T> {
    pub value: T,
    right: Pointer,
    left: Pointer,
    parent: Pointer,
}

pub struct AVLTree<T> {
    slab: Slab<Node<T>>,
    pub root: Pointer,
}

impl<T: PartialOrd + Copy + fmt::Debug> AVLTree<T> {
    // Returns a new doubly linked list.
    pub fn new() -> Self {
        AVLTree {
            slab: Slab::new(),
            root: Pointer::null(),
        }
    }

    // Returns true if tree is empty, false otherwise
    pub fn is_empty(&self) -> bool{
        return self.root.is_null();
    }

    // Returns height of tree
    pub fn get_height(&self) -> u32{
        return self.get_height_from_node(self.root);
    }

    // Returns balance factor used to determine balance of AVL tree. Neg number = left heavy, pos number = right heavy
    pub fn get_balance_factor(&self, node: Pointer) -> i32{
        return self.get_height_from_node(self[node].right) as i32 - self.get_height_from_node(self[node].left) as i32;
    }

    // Returns height below node passed as argument
    pub fn get_height_from_node(&self, node: Pointer) -> u32{
        if node.is_null(){
            return 0;
        }
        else{
            let left = self.get_height_from_node(self[node].left);
            let right = self.get_height_from_node(self[node].right);
            return cmp::max(left, right) + 1;
        }
    }

    // Insert node with value val into tree
    pub fn insert(&mut self, val: T){
        if self.root.is_null(){
            self.root = Pointer(self.slab.insert(Node {
                value: val,
                right: Pointer::null(),
                left: Pointer::null(),
                parent: Pointer::null(),
            }));
        }
        else{
            self.insert_below_node(val, self.root);
        }
    }

    pub fn insert_below_node(&mut self, val: T, node: Pointer){
        let nodeValue = self[node].value;
        let left = self[node].left;
        let right = self[node].right;

        if val == nodeValue{
            println!("Duplicate node values");
            return;
        }
        else if val > nodeValue{
            if right.is_null(){
                self[node].right = Pointer(self.slab.insert(Node {
                    value: val,
                    right: Pointer::null(),
                    left: Pointer::null(),
                    parent: node,
                }));
                // Fix tree
                self.rebalance(node);
            }
            else{
                self.insert_below_node(val, right);
            }
        }
        else if val < nodeValue{
            if left.is_null(){
                self[node].left = Pointer(self.slab.insert(Node {
                    value: val,
                    right: Pointer::null(),
                    left: Pointer::null(),
                    parent: node,
                }));
                // Fix tree
                self.rebalance(node);
            }
            else{
                self.insert_below_node(val, left);
            }
        }
    }

    pub fn left_rotate(&mut self, current: Pointer){
        let right = self[current].right;

        if right.is_null(){
            println!("NULL");
            return;
        }

        let right_left = self[right].left;
        let parent = self[current].parent;

        // set W's right child to be B
        self[current].right = right_left;

        if !right_left.is_null(){
            self[right_left].parent = current;
        }

        // setting W's parent to be V
        self[current].parent = right;
        self[right].left = current;

        // Set V's parent to be W's old parent
        self[right].parent = parent;

        if parent.is_null(){
            self.root = right;
        }
        else{
            let parent_right = self[parent].right;
            if !parent_right.is_null(){
                if self[parent_right].value == self[current].value{ // set V to parent right
                    self[parent].right = right;
                }
                else{ // set V to parent left
                    self[parent].left = right;
                }
            }
            else{ // set V to parent left
                self[parent].left = right;
            }
        }
    }
    pub fn right_rotate(&mut self, current: Pointer){
        let left = self[current].left;

        if left.is_null(){
            return;
        }

        let left_right = self[left].right;
        let parent = self[current].parent;

        // set V's left child to be B
        self[current].left = left_right;

        if !left_right.is_null(){
            self[left_right].parent = current;
        }

        // setting V's parent to be W
        self[current].parent = left;
        self[left].right = current;

        // Set W's parent to be V's old parent
        self[left].parent = parent;

        if parent.is_null(){
            self.root = left;
        }
        else{
            let parent_left = self[parent].left;
            if !parent_left.is_null(){
                if self[parent_left].value == self[current].value{ // set W to parent left
                    self[parent].left = left;
                }
                else{ // set W to parent right
                    self[parent].right = left;
                }
            }
            else{ // set W to parent right
                self[parent].right = left;
            }
        }
    }

    // Rebalance to ensure AVL tree properties are maintained
    pub fn rebalance(&mut self, mut node: Pointer){
        while !node.is_null(){
            let bal = self.get_balance_factor(node);
            if bal < -1{                
                // Left heavy so rotate right
                let y = self[node].left;
                let bal_y = self.get_balance_factor(y);
                if bal_y > 0 {
                    // Need left-right rotate
                    self.left_rotate(y);
                }
                self.right_rotate(node);
            }
            else if bal > 1{
                // Right heavy so rotate left
                let y = self[node].right;
                let bal_y = self.get_balance_factor(y);
                if bal_y < 0 {
                    // Need right-left rortate
                    self.right_rotate(y);
                }
                self.left_rotate(node);
            }
            node = self[node].parent;
        }
    }

    pub fn get_node(&self, val: T) -> Pointer{
        let node = self.get_node_from_node(self.root, val);

        if node.is_null(){
            println!("Node does not exist!");
            return Pointer::null();
        }
        return node;
    }

    pub fn get_node_from_node(&self, node: Pointer, val:T) -> Pointer{
        if node.is_null(){
            return Pointer::null();
        }
        else{
            if self[node].value == val{
                return node;
            }
            else if val > self[node].value{
                return self.get_node_from_node(self[node].right, val);
            }
            else{
                return self.get_node_from_node(self[node].left, val);
            }
        }
    }

    // Delete node with value val
    pub fn delete(&mut self, val: T) /*-> T*/{
        let remove = self.get_node(val);
        if remove.is_null(){
            return;
        }
        let parent = self[remove].parent;
        // Three cases no children, 1 children, 2 children
        if self[remove].left.is_null() && self[remove].right.is_null(){
            // No children just delete node
            if parent.is_null(){
                self.root = Pointer::null();
            }
            else if self[self[remove].parent].left == remove{
                self[parent].left = Pointer::null();
            }
            else{
                self[parent].right = Pointer::null();
            }
        }
        else if !self[remove].left.is_null() && !self[remove].right.is_null(){
            // Two childre need to find replacement node
            let replace = self.min_of_right(remove);
            if parent.is_null(){
                let lefttree = self[remove].left;
                self.root = replace;
                self[replace].parent = Pointer::null();
                self[replace].left = self[remove].left;
                self[lefttree].parent = replace;
                if self[remove].right == replace{
                    self[replace].right = Pointer::null();
                }
                else{
                    let righttree = self[remove].right;
                    self[replace].right = self[remove].right;
                    self[righttree].parent = replace;
                }
            }
            else if self[parent].left == remove{
                let lefttree = self[remove].left;
                self[parent].left = replace;
                self[replace].parent = parent;
                self[replace].left = self[remove].left;
                self[lefttree].parent = replace;
                if self[remove].right == replace{
                    self[replace].right = Pointer::null();
                }
                else{
                    let righttree = self[remove].right;
                    self[replace].right = self[remove].right;
                    self[righttree].parent = replace;
                }
            }
            else{
                let lefttree = self[remove].left;
                self[parent].right = replace;
                self[replace].parent = parent;
                self[replace].left = self[remove].left;
                self[lefttree].parent = replace;
                if self[remove].right == replace{
                    self[replace].right = Pointer::null();
                }
                else{
                    let righttree = self[remove].right;
                    self[replace].right = self[remove].right;
                    self[righttree].parent = replace;
                }
            }
        }
        else{
            // One child, replace remove with child
            if parent.is_null(){
                if self[remove].left.is_null(){
                    let right = self[remove].right;
                    self.root = right;
                    self[right].parent = Pointer::null();
                }
                else{
                    let left = self[remove].left;
                    self.root = self[remove].left;      
                    self[left].parent = Pointer::null();
                }
            }
            else if !self[remove].left.is_null(){
                if self[self[remove].parent].left == remove{
                    let left = self[remove].left;
                    self[parent].left = left;
                    self[left].parent = parent;
                }
                else{
                    let left = self[remove].left;
                    self[parent].right = left;
                    self[left].parent = parent;
                }
            }
            else{
                if self[self[remove].parent].left == remove{
                    let right = self[remove].right;
                    self[parent].left = right;
                    self[right].parent = parent;
                }
                else{
                    let right = self[remove].right;
                    self[parent].right = right;
                    self[right].parent = parent;
                }
            }
        }        
        self.rebalance(parent);
    }

    // Return number of leaf nodes is tree
    pub fn count_leaf_nodes(&self) -> u32{
        return self.count_leaf_nodes_from_node(self.root);
    }
    pub fn count_leaf_nodes_from_node(&self, node: Pointer) -> u32{
        if node.is_null(){
            return 0;
        }
        else{
            let left = self.count_leaf_nodes_from_node(self[node].left);
            let right = self.count_leaf_nodes_from_node(self[node].right);
            if left == right && left == 0{
                return 1;
            }
            return left + right;
        }
    }

    // Print tree from left to right
    pub fn print_in_order_traversal(&self){
        println!("{:?}", self);
    }

    // Find smallest value in right tree of head, used for delete
    pub fn min_of_right(&self, head: Pointer)-> Pointer{
        let mut current = self[head].right;
        if current.is_null(){
            return current;
        }

        while !self[current].left.is_null(){
            current = self[current].left;
        }
        return current;
    }

}