1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
//
// A rust binding for the GSL library by Guillaume Gomez (guillaume1.gomez@gmail.com)
//

use crate::paste::paste;
use crate::Value;
use ffi::FFI;
use std::fmt;
use std::fmt::{Debug, Formatter};
use std::marker::PhantomData;

macro_rules! gsl_vec_complex {
    ($rust_name:ident, $name:ident, $complex:ident, $rust_ty:ident) => {
        paste! {

        use types::$complex;

        pub struct $rust_name {
            vec: *mut sys::$name,
            can_free: bool,
        }

        impl Drop for $rust_name {
            #[doc(alias = $name _free)]
            fn drop(&mut self) {
                if self.can_free {
                    unsafe { sys::[<$name _free>](self.vec) };
                    self.vec = ::std::ptr::null_mut();
                }
            }
        }

        impl Debug for $rust_name {
            fn fmt(&self, f: &mut Formatter) -> fmt::Result {
                let ptr = self.unwrap_shared();
                if ptr.is_null() {
                    write!(f, "<null>")
                } else {
                    write!(f, "{:?}", self.as_slice().expect("conversion to slice failed"))
                }
            }
        }

        impl FFI<sys::$name> for $rust_name {
            fn wrap(vec: *mut sys::$name) -> Self {
                Self {
                    vec,
                    can_free: true,
                }
            }

            fn soft_wrap(vec: *mut sys::$name) -> Self {
                Self {
                    vec,
                    can_free: false,
                }
            }

            fn unwrap_shared(&self) -> *const sys::$name {
                self.vec as *const _
            }

            fn unwrap_unique(&mut self) -> *mut sys::$name {
                self.vec
            }
        }

        impl $rust_name {
            #[doc = "Create a new " $rust_name "with all elements set to zero"]
            #[doc(alias = $name _calloc)]
            pub fn new(size: usize) -> Option<Self> {
                let tmp = unsafe { sys::[<$name _calloc>](size) };

                if tmp.is_null() {
                    None
                } else {
                    Some(Self::wrap(tmp))
                }
            }

            #[doc(alias = $name _alloc)]
            pub fn from_slice(slice: &[$complex]) -> Option<Self> {
                let tmp = unsafe { sys::[<$name _alloc>](slice.len() as _) };

                if tmp.is_null() {
                    None
                } else {
                    let mut v = Self::wrap(tmp);

                    for (pos, tmp) in slice.iter().enumerate() {
                        v.set(pos as _, tmp);
                    }
                    Some(v)
                }
            }

            pub fn len(&self) -> usize {
                let ptr = self.unwrap_shared();
                if ptr.is_null() {
                    0
                } else {
                    unsafe { (*ptr).size }
                }
            }

            pub fn is_empty(&self) -> bool {
                self.len() == 0
            }

            pub fn as_slice(&self) -> Option<&[$rust_ty]> {
                let ptr = unsafe { (*self.unwrap_shared()).data };
                if ptr.is_null() {
                    None
                } else {
                    Some(unsafe { ::std::slice::from_raw_parts(ptr, self.len()) })
                }
            }

            pub fn as_slice_mut(&mut self) -> Option<&mut [$rust_ty]> {
                let ptr = unsafe { (*self.unwrap_shared()).data };
                if ptr.is_null() {
                    None
                } else {
                    Some(unsafe { ::std::slice::from_raw_parts_mut(ptr, self.len()) })
                }
            }

            /// This function returns the i-th element of a vector v. If i lies outside the allowed range of
            /// 0 to n-1 then the error handler is invoked and 0 is returned.
            #[doc(alias = $name _get)]
            pub fn get(&self, i: usize) -> $complex {
                unsafe { ::std::mem::transmute(sys::[<$name _get>](self.unwrap_shared(), i)) }
            }

            /// This function sets the value of the i-th element of a vector v to x. If i lies outside the
            /// allowed range of 0 to n-1 then the error handler is invoked.
            #[doc(alias = $name _set)]
            pub fn set(&mut self, i: usize, x: &$complex) -> &Self {
                unsafe {
                    sys::[<$name _set>](self.unwrap_unique(), i, ::std::mem::transmute(*x))
                };
                self
            }

            /// This function sets all the elements of the vector v to the value x.
            #[doc(alias = $name _set_all)]
            pub fn set_all(&mut self, x: &$complex) -> &Self {
                unsafe {
                    sys::[<$name _set_all>](self.unwrap_unique(), ::std::mem::transmute(*x))
                };
                self
            }

            /// This function sets all the elements of the vector v to zero.
            #[doc(alias = $name _set_zero)]
            pub fn set_zero(&mut self) -> &$rust_name {
                unsafe { sys::[<$name _set_zero>](self.unwrap_unique()) };
                self
            }

            /// This function makes a basis vector by setting all the elements of the vector v to zero
            /// except for the i-th element which is set to one.
            #[doc(alias = $name _set_basis)]
            pub fn set_basis(&mut self, i: usize) -> &Self {
                unsafe { sys::[<$name _set_basis>](self.unwrap_unique(), i) };
                self
            }

            /// This function copies the elements of the other vector into the self vector. The two vectors
            /// must have the same length.
            #[doc(alias = $name _memcpy)]
            pub fn copy_from(&mut self, other: &$rust_name) -> Value {
                Value::from(unsafe {
                    sys::[<$name _memcpy>](self.unwrap_unique(), other.unwrap_shared())
                })
            }

            /// This function copies the elements of the self vector into the other vector. The two vectors
            /// must have the same length.
            #[doc(alias = $name _memcpy)]
            pub fn copy_to(&self, other: &mut $rust_name) -> Value {
                Value::from(unsafe {
                    sys::[<$name _memcpy>](other.unwrap_unique(), self.unwrap_shared())
                })
            }

            /// This function exchanges the elements of the vectors by copying. The two vectors must have
            /// the same length.
            #[doc(alias = $name _swap)]
            pub fn swap(&mut self, other: &mut $rust_name) -> Value {
                Value::from(unsafe {
                    sys::[<$name _swap>](other.unwrap_unique(), self.unwrap_unique())
                })
            }

            /// This function exchanges the i-th and j-th elements of the vector v in-place.
            #[doc(alias = $name _swap_elements)]
            pub fn swap_elements(&mut self, i: usize, j: usize) -> Value {
                Value::from(unsafe {
                    sys::[<$name _swap_elements>](self.unwrap_unique(), i, j)
                })
            }

            /// This function reverses the order of the elements of the vector v.
            #[doc(alias = $name _reverse)]
            pub fn reverse(&mut self) -> Value {
                Value::from(unsafe { sys::[<$name _reverse>](self.unwrap_unique()) })
            }

            /// This function adds the elements of the other vector to the elements of the `self` vector.
            /// The result a_i <- a_i + b_i is stored in self and other remains unchanged. The two vectors
            /// must have the same length.
            #[doc(alias = $name _add)]
            pub fn add(&mut self, other: &$rust_name) -> Value {
                Value::from(unsafe {
                    sys::[<$name _add>](self.unwrap_unique(), other.unwrap_shared())
                })
            }

            /// This function subtracts the elements of the self vector from the elements of the other
            /// vector. The result a_i <- a_i - b_i is stored in self and other remains unchanged. The two
            /// vectors must have the same length.
            #[doc(alias = $name _sub)]
            pub fn sub(&mut self, other: &$rust_name) -> Value {
                Value::from(unsafe {
                    sys::[<$name _sub>](self.unwrap_unique(), other.unwrap_shared())
                })
            }

            /// This function multiplies the elements of the self vector a by the elements of the other
            /// vector. The result a_i <- a_i * b_i is stored in self and other remains unchanged. The two
            /// vectors must have the same length.
            #[doc(alias = $name _mul)]
            pub fn mul(&mut self, other: &$rust_name) -> Value {
                Value::from(unsafe {
                    sys::[<$name _mul>](self.unwrap_unique(), other.unwrap_shared())
                })
            }

            /// This function divides the elements of the self vector by the elements of the other vector.
            /// The result a_i <- a_i / b_i is stored in self and other remains unchanged. The two vectors
            /// must have the same length.
            #[doc(alias = $name _div)]
            pub fn div(&mut self, other: &$rust_name) -> Value {
                Value::from(unsafe {
                    sys::[<$name _div>](self.unwrap_unique(), other.unwrap_shared())
                })
            }

            /// This function multiplies the elements of the self vector by the constant factor x. The
            /// result a_i <- a_i is stored in self.
            #[doc(alias = $name _scale)]
            pub fn scale(&mut self, x: &$complex) -> Value {
                Value::from(unsafe {
                    sys::[<$name _scale>](self.unwrap_unique(), ::std::mem::transmute(*x))
                })
            }

            /// This function adds the constant value x to the elements of the self vector. The result
            /// a_i <- a_i + x is stored in self.
            #[doc(alias = $name _add_constant)]
            pub fn add_constant(&mut self, x: &$complex) -> Value {
                Value::from(unsafe {
                    sys::[<$name _add_constant>](
                        self.unwrap_unique(),
                        ::std::mem::transmute(*x),
                    )
                })
            }

            /// This function returns true if all the elements of the self vector are equal to 0.
            #[doc(alias = $name _isnull)]
            pub fn is_null(&self) -> bool {
                unsafe { sys::[<$name _isnull>](self.unwrap_shared()) == 1 }
            }

            /// This function returns true if all the elements of the self vector are stricly positive.
            #[doc(alias = $name _ispos)]
            pub fn is_pos(&self) -> bool {
                unsafe { sys::[<$name _ispos>](self.unwrap_shared()) == 1 }
            }

            /// This function returns true if all the elements of the self vector are stricly negative.
            #[doc(alias = $name _isneg)]
            pub fn is_neg(&self) -> bool {
                unsafe { sys::[<$name _isneg>](self.unwrap_shared()) == 1 }
            }

            /// This function returns true if all the elements of the self vector are stricly non-negative.
            #[doc(alias = $name _isnonneg)]
            pub fn is_non_neg(&self) -> bool {
                unsafe { sys::[<$name _isnonneg>](self.unwrap_shared()) == 1 }
            }

            #[doc(alias = $name _equal)]
            pub fn equal(&self, other: &$rust_name) -> bool {
                unsafe {
                    sys::[<$name _equal>](self.unwrap_shared(), other.unwrap_shared()) == 1
                }
            }

            pub fn clone(&self) -> Option<Self> {
                if self.unwrap_shared().is_null() {
                    None
                } else {
                    match Self::new(self.len()) {
                        Some(mut v) => {
                            v.copy_from(self);
                            Some(v)
                        }
                        None => None,
                    }
                }
            }
        }

        pub struct [<$rust_name View>]<'a> {
            v: sys::[<$name _view>],
            #[allow(dead_code)]
            phantom: PhantomData<&'a ()>,
        }

        impl<'a> [<$rust_name View>]<'a> {
            #[doc(hidden)]
            pub(crate) fn wrap<F: FnOnce(Option<Self>)>(v: sys::[<$name _view>], f: F) {
                let tmp = Self {
                    v,
                    phantom: PhantomData,
                };
                let is_none = {
                    let v = &tmp.v.vector;
                    let tmp = $rust_name::soft_wrap(v as *const _ as usize as *mut _);
                    tmp.as_slice().is_none()
                };
                if is_none {
                    f(None)
                } else {
                    f(Some(tmp))
                }
            }

            /// These functions return a vector view of a subvector of another vector v. The start of the
            /// new vector is offset by offset elements from the start of the original vector. The new
            /// vector has n elements. Mathematically, the i-th element of the new vector v’ is given by,
            ///
            /// v'(i) = v->data[(offset + i)*v->stride]
            ///
            /// where the index i runs from 0 to n-1.
            ///
            /// The data pointer of the returned vector struct is set to null if the combined parameters
            /// (offset,n) overrun the end of the original vector.
            ///
            /// The new vector is only a view of the block underlying the original vector, v. The block
            /// containing the elements of v is not owned by the new vector. When the view goes out of scope
            /// the original vector v and its block will continue to exist. The original memory can only be
            /// deallocated by freeing the original vector. Of course, the original vector should not be
            /// deallocated while the view is still in use.
            ///
            /// The function gsl_vector_const_subvector is equivalent to gsl_vector_subvector but can be
            /// used for vectors which are declared const.
            #[doc(alias = $name _subvector)]
            pub fn from_vector(v: &'a mut $rust_name, offset: usize, n: usize) -> Self {
                unsafe {
                    Self {
                        v: sys::[<$name _subvector>](v.unwrap_unique(), offset, n),
                        phantom: PhantomData,
                    }
                }
            }

            /// These functions return a vector view of a subvector of another vector v with an additional
            /// stride argument. The subvector is formed in the same way as for gsl_vector_subvector but the
            /// new vector has n elements with a step-size of stride from one element to the next in the
            /// original vector. Mathematically, the i-th element of the new vector v’ is given by,
            ///
            /// v'(i) = v->data[(offset + i*stride)*v->stride]
            /// where the index i runs from 0 to n-1.
            ///
            /// Note that subvector views give direct access to the underlying elements of the original
            /// vector. For example, the following code will zero the even elements of the vector v of
            /// length n, while leaving the odd elements untouched,
            ///
            /// ```C
            /// gsl_vector_view v_even
            ///   = gsl_vector_subvector_with_stride (v, 0, 2, n/2);
            /// gsl_vector_set_zero (&v_even.vector);
            /// ```
            /// A vector view can be passed to any subroutine which takes a vector argument just as a
            /// directly allocated vector would be, using &view.vector.
            /// For example, the following code computes the norm of the odd elements of v using the BLAS
            /// routine DNRM2,
            ///
            /// ```C
            /// gsl_vector_view v_odd
            ///   = gsl_vector_subvector_with_stride (v, 1, 2, n/2);
            /// double r = gsl_blas_dnrm2 (&v_odd.vector);
            /// ```
            /// The function gsl_vector_const_subvector_with_stride is equivalent to
            /// gsl_vector_subvector_with_stride but can be used for vectors which are declared const.
            #[doc(alias = $name _subvector_with_stride)]
            pub fn from_vector_with_stride(
                v: &'a mut $rust_name,
                offset: usize,
                stride: usize,
                n: usize,
            ) -> Self {
                unsafe {
                    Self {
                        v: sys::[<$name _subvector_with_stride>](v.vec, offset, stride, n),
                        phantom: PhantomData,
                    }
                }
            }

            /// These functions return a vector view of an array. The start of the new vector is given by
            /// base and has n elements. Mathematically, the i-th element of the new vector v’ is given by,
            ///
            /// ```text
            /// v'(i) = base[i]
            /// ```
            ///
            /// where the index i runs from 0 to n-1.
            ///
            /// The array containing the elements of v is not owned by the new vector view. When the view
            /// goes out of scope the original array will continue to exist. The original memory can only be
            /// deallocated by freeing the original pointer base. Of course, the original array should not
            /// be deallocated while the view is still in use.
            ///
            /// The function gsl_vector_const_view_array is equivalent to gsl_vector_view_array but can be
            /// used for arrays which are declared const.
            #[doc(alias = $name _view_array)]
            pub fn from_array(base: &'a mut [f64]) -> Self {
                unsafe {
                    Self {
                        v: sys::[<$name _view_array>](base.as_mut_ptr() as _, base.len() as _),
                        phantom: PhantomData,
                    }
                }
            }

            /// These functions return a vector view of an array base with an additional stride argument.
            /// The subvector is formed in the same way as for gsl_vector_view_array but the new vector has
            /// n elements with a step-size of stride from one element to the next in the original
            /// array. Mathematically, the i-th element of the new vector v’ is given by,
            ///
            /// v'(i) = base[i*stride]
            ///
            /// where the index i runs from 0 to n-1.
            ///
            /// Note that the view gives direct access to the underlying elements of the original array. A
            /// vector view can be passed to any subroutine which takes a vector argument just as a directly
            /// allocated vector would be, using &view.vector.
            ///
            /// The function gsl_vector_const_view_array_with_stride is equivalent to
            /// gsl_vector_view_array_with_stride but can be used for arrays which are declared const.
            #[doc(alias = $name _view_array_with_stride)]
            pub fn from_array_with_stride(base: &'a mut [$rust_ty], stride: usize) -> Self {
                unsafe {
                    Self {
                        v: sys::[<$name _view_array_with_stride>](
                            base.as_mut_ptr(),
                            stride,
                            base.len() as _,
                        ),
                        phantom: PhantomData,
                    }
                }
            }

            pub fn vector<F: FnOnce(Option<&$rust_name>)>(&self, f: F) {
                let v = &self.v.vector;
                let tmp = $rust_name::soft_wrap(v as *const _ as usize as *mut _);
                if tmp.as_slice().is_none() {
                    f(None)
                } else {
                    f(Some(&tmp))
                }
            }

            pub fn vector_mut<F: FnOnce(Option<&mut $rust_name>)>(&mut self, f: F) {
                let v = &mut self.v.vector;
                let mut tmp = $rust_name::soft_wrap(v as *mut _);
                if tmp.as_slice().is_none() {
                    f(None)
                } else {
                    f(Some(&mut tmp))
                }
            }
        } // end of impl block

        } // end of paste! block
    }; // end of macro block
}

gsl_vec_complex!(VectorComplexF32, gsl_vector_complex_float, ComplexF32, f32);
gsl_vec_complex!(VectorComplexF64, gsl_vector_complex, ComplexF64, f64);