1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
//
// A rust binding for the GSL library by Guillaume Gomez (guillaume1.gomez@gmail.com)
//

/*!
# Real Symmetric Matrices

For real symmetric matrices, the library uses the symmetric bidiagonalization and QR reduction
method. This is described in Golub & van Loan, section 8.3. The computed eigenvalues are accurate to
an absolute accuracy of \epsilon ||A||_2, where \epsilon is the machine precision.

# Complex Hermitian Matrices

For hermitian matrices, the library uses the complex form of the symmetric bidiagonalization and QR
reduction method.

# Real Nonsymmetric Matrices

The solution of the real nonsymmetric eigensystem problem for a matrix A involves computing the
Schur decomposition

A = Z T Z^T

where Z is an orthogonal matrix of Schur vectors and T, the Schur form, is quasi upper triangular
with diagonal 1-by-1 blocks which are real eigenvalues of A, and diagonal 2-by-2 blocks whose
eigenvalues are complex conjugate eigenvalues of A. The algorithm used is the double-shift Francis
method.

# Real Generalized Symmetric-Definite Eigensystems

The real generalized symmetric-definite eigenvalue problem is to find eigenvalues \lambda and
eigenvectors x such that

A x = lambda B x

where A and B are symmetric matrices, and B is positive-definite. This problem reduces to the
standard symmetric eigenvalue problem by applying the Cholesky decomposition to B:

```latex
                      A x = lambda B x
                      A x = lambda L L^t x
( L^{-1} A L^{-t} ) L^t x = lambda L^t x
```

Therefore, the problem becomes C y = lambda y where C = L^{-1} A L^{-t} is symmetric, and y = L^t x.
The standard symmetric eigensolver can be applied to the matrix C. The resulting eigenvectors are
backtransformed to find the vectors of the original problem. The eigenvalues and eigenvectors of the
generalized symmetric-definite eigenproblem are always real.

# Complex Generalized Hermitian-Definite Eigensystems

The complex generalized hermitian-definite eigenvalue problem is to find eigenvalues \lambda and
eigenvectors x such that

A x = \lambda B x

where A and B are hermitian matrices, and B is positive-definite. Similarly to the real case, this
can be reduced to C y = \lambda y where C = L^{-1} A L^{-H} is hermitian, and y = L^H x. The
standard hermitian eigensolver can be applied to the matrix C. The resulting eigenvectors are
backtransformed to find the vectors of the original problem. The eigenvalues of the generalized
hermitian-definite eigenproblem are always real.

# Real Generalized Nonsymmetric Eigensystems

Given two square matrices (A, B), the generalized nonsymmetric eigenvalue problem is to find
eigenvalues \lambda and eigenvectors x such that

A x = \lambda B x

We may also define the problem as finding eigenvalues \mu and eigenvectors y such that

\mu A y = B y
Note that these two problems are equivalent (with \lambda = 1/\mu) if neither \lambda nor \mu is
zero. If say, \lambda is zero, then it is still a well defined eigenproblem, but its alternate
problem involving \mu is not. Therefore, to allow for zero (and infinite) eigenvalues, the problem
which is actually solved is

\beta A x = \alpha B x
The eigensolver routines below will return two values \alpha and \beta and leave it to the user to
perform the divisions \lambda = \alpha / \beta and \mu = \beta / \alpha.

If the determinant of the matrix pencil A - \lambda B is zero for all \lambda, the problem is said
to be singular; otherwise it is called regular. Singularity normally leads to some
\alpha = \beta = 0 which means the eigenproblem is ill-conditioned and generally does not have well
defined eigenvalue solutions. The routines below are intended for regular matrix pencils and could
yield unpredictable results when applied to singular pencils.

The solution of the real generalized nonsymmetric eigensystem problem for a matrix pair (A, B)
involves computing the generalized Schur decomposition

A = Q S Z^T
B = Q T Z^T
where Q and Z are orthogonal matrices of left and right Schur vectors respectively, and (S, T) is
the generalized Schur form whose diagonal elements give the \alpha and \beta values. The algorithm
used is the QZ method due to Moler and Stewart (see references).
!*/

use crate::Value;
use ffi::FFI;
use types::{MatrixComplexF64, MatrixF64, VectorComplexF64, VectorF64};

ffi_wrapper!(
    EigenSymmetricWorkspace,
    *mut sys::gsl_eigen_symm_workspace,
    gsl_eigen_symm_free
);

impl EigenSymmetricWorkspace {
    /// This function allocates a workspace for computing eigenvalues of n-by-n real symmetric
    /// matrices. The size of the workspace is O(2n).
    #[doc(alias = "gsl_eigen_symm_alloc")]
    pub fn new(n: usize) -> Option<Self> {
        let tmp = unsafe { sys::gsl_eigen_symm_alloc(n) };

        if tmp.is_null() {
            None
        } else {
            Some(Self::wrap(tmp))
        }
    }

    /// This function computes the eigenvalues of the real symmetric matrix `A`. The diagonal and
    /// lower triangular part of `A` are destroyed during the computation, but the strict upper
    /// triangular part is not referenced. The eigenvalues are stored in the vector `eval` and are
    /// unordered.
    #[doc(alias = "gsl_eigen_symm")]
    pub fn symm(&mut self, A: &mut MatrixF64, eval: &mut VectorF64) -> Value {
        Value::from(unsafe {
            sys::gsl_eigen_symm(
                A.unwrap_unique(),
                eval.unwrap_unique(),
                self.unwrap_unique(),
            )
        })
    }
}

ffi_wrapper!(
    EigenSymmetricVWorkspace,
    *mut sys::gsl_eigen_symmv_workspace,
    gsl_eigen_symmv_free
);

impl EigenSymmetricVWorkspace {
    /// This function allocates a workspace for computing eigenvalues and eigenvectors of n-by-n
    /// real symmetric matrices. The size of the workspace is O(4n).
    #[doc(alias = "gsl_eigen_symmv_alloc")]
    pub fn new(n: usize) -> Option<Self> {
        let tmp = unsafe { sys::gsl_eigen_symmv_alloc(n) };

        if tmp.is_null() {
            None
        } else {
            Some(Self::wrap(tmp))
        }
    }

    /// This function computes the eigenvalues and eigenvectors of the real symmetric matrix `A`.
    /// The diagonal and lower triangular part of `A` are destroyed during the computation, but the
    /// strict upper triangular part is not referenced. The eigenvalues are stored in the vector
    /// `eval` and are unordered. The corresponding eigenvectors are stored in the columns of the
    /// matrix `evec`. For example, the eigenvector in the first column corresponds to the first
    /// eigenvalue. The eigenvectors are guaranteed to be mutually orthogonal and normalised to unit
    /// magnitude.
    #[doc(alias = "gsl_eigen_symmv")]
    pub fn symmv(
        &mut self,
        A: &mut MatrixF64,
        eval: &mut VectorF64,
        evec: &mut MatrixF64,
    ) -> Value {
        Value::from(unsafe {
            sys::gsl_eigen_symmv(
                A.unwrap_unique(),
                eval.unwrap_unique(),
                evec.unwrap_unique(),
                self.unwrap_unique(),
            )
        })
    }
}

ffi_wrapper!(
    EigenHermitianWorkspace,
    *mut sys::gsl_eigen_herm_workspace,
    gsl_eigen_herm_free
);

impl EigenHermitianWorkspace {
    /// This function allocates a workspace for computing eigenvalues of n-by-n complex hermitian
    /// matrices. The size of the workspace is O(3n).
    #[doc(alias = "gsl_eigen_herm_alloc")]
    pub fn new(n: usize) -> Option<Self> {
        let tmp = unsafe { sys::gsl_eigen_herm_alloc(n) };

        if tmp.is_null() {
            None
        } else {
            Some(Self::wrap(tmp))
        }
    }

    /// This function computes the eigenvalues of the complex hermitian matrix `A`. Additional
    /// workspace of the appropriate size must be provided in `self`. The diagonal and lower
    /// triangular part of `A` are destroyed during the computation, but the strict upper triangular
    /// part is not referenced. The imaginary parts of the diagonal are assumed to be zero and are
    /// not referenced. The eigenvalues are stored in the vector `eval` and are unordered.
    #[doc(alias = "gsl_eigen_herm")]
    pub fn herm(&mut self, A: &mut MatrixComplexF64, eval: &mut VectorF64) -> Value {
        Value::from(unsafe {
            sys::gsl_eigen_herm(
                A.unwrap_unique(),
                eval.unwrap_unique(),
                self.unwrap_unique(),
            )
        })
    }
}

ffi_wrapper!(
    EigenHermitianVWorkspace,
    *mut sys::gsl_eigen_hermv_workspace,
    gsl_eigen_hermv_free
);

impl EigenHermitianVWorkspace {
    /// This function allocates a workspace for computing eigenvalues and eigenvectors of n-by-n
    /// complex hermitian matrices. The size of the workspace is O(5n).
    #[doc(alias = "gsl_eigen_hermv_alloc")]
    pub fn new(n: usize) -> Option<Self> {
        let tmp = unsafe { sys::gsl_eigen_hermv_alloc(n) };

        if tmp.is_null() {
            None
        } else {
            Some(Self::wrap(tmp))
        }
    }

    /// This function computes the eigenvalues and eigenvectors of the complex hermitian matrix `A`.
    /// Additional workspace of the appropriate size must be provided in `self`. The diagonal and
    /// lower triangular part of `A` are destroyed during the computation, but the strict upper
    /// triangular part is not referenced. The imaginary parts of the diagonal are assumed to be
    /// zero and are not referenced. The eigenvalues are stored in the vector `eval` and are
    /// unordered. The corresponding complex eigenvectors are stored in the columns of the matrix
    /// `evec`. For example, the eigenvector in the first column corresponds to the first
    /// eigenvalue. The eigenvectors are guaranteed to be mutually orthogonal and normalised to unit
    /// magnitude.
    #[doc(alias = "gsl_eigen_hermv")]
    pub fn hermv(
        &mut self,
        A: &mut MatrixComplexF64,
        eval: &mut VectorF64,
        evec: &mut MatrixComplexF64,
    ) -> Value {
        Value::from(unsafe {
            sys::gsl_eigen_hermv(
                A.unwrap_unique(),
                eval.unwrap_unique(),
                evec.unwrap_unique(),
                self.unwrap_unique(),
            )
        })
    }
}

ffi_wrapper!(
    EigenNonSymmetricWorkspace,
    *mut sys::gsl_eigen_nonsymm_workspace,
    gsl_eigen_nonsymm_free
);

impl EigenNonSymmetricWorkspace {
    /// This function allocates a workspace for computing eigenvalues of n-by-n complex hermitian
    /// matrices. The size of the workspace is O(3n).
    #[doc(alias = "gsl_eigen_nonsymm_alloc")]
    pub fn new(n: usize) -> Option<Self> {
        let tmp = unsafe { sys::gsl_eigen_nonsymm_alloc(n) };

        if tmp.is_null() {
            None
        } else {
            Some(Self::wrap(tmp))
        }
    }

    /// This function sets some parameters which determine how the eigenvalue problem is solved in
    /// subsequent calls to gsl_eigen_nonsymm.
    ///
    /// If compute_t is set to 1, the full Schur form T will be computed by gsl_eigen_nonsymm. If it
    /// is set to 0, T will not be computed (this is the default setting). Computing the full Schur
    /// form T requires approximately 1.5–2 times the number of flops.
    ///
    /// If balance is set to 1, a balancing transformation is applied to the matrix prior to
    /// computing eigenvalues. This transformation is designed to make the rows and columns of the
    /// matrix have comparable norms, and can result in more accurate eigenvalues for matrices whose
    /// entries vary widely in magnitude. See
    /// [`Balancing`](http://www.gnu.org/software/gsl/manual/html_node/Balancing.html#Balancing) for
    /// more information. Note that the balancing transformation does not preserve the orthogonality
    /// of the Schur vectors, so if you wish to compute the Schur vectors with gsl_eigen_nonsymm_Z
    /// you will obtain the Schur vectors of the balanced matrix instead of the original matrix.
    /// The relationship will be
    ///
    /// T = Q^t D^(-1) A D Q
    ///
    /// where Q is the matrix of Schur vectors for the balanced matrix, and D is the balancing
    /// transformation. Then gsl_eigen_nonsymm_Z will compute a matrix Z which satisfies
    ///
    /// T = Z^(-1) A Z
    ///
    /// with Z = D Q. Note that Z will not be orthogonal. For this reason, balancing is not
    /// performed by default.
    #[doc(alias = "gsl_eigen_nonsymm_params")]
    pub fn params(&mut self, compute_t: i32, balance: i32) {
        unsafe { sys::gsl_eigen_nonsymm_params(compute_t, balance, self.unwrap_unique()) }
    }

    /// This function computes the eigenvalues of the real nonsymmetric matrix `A` and stores them
    /// in the vector `eval`. If T is desired, it is stored in the upper portion of `A` on output.
    /// Otherwise, on output, the diagonal of `A` will contain the 1-by-1 real eigenvalues and
    /// 2-by-2 complex conjugate eigenvalue systems, and the rest of `A` is destroyed. In rare
    /// cases, this function may fail to find all eigenvalues. If this happens, an error code is
    /// returned and the number of converged eigenvalues is stored in w->n_evals. The converged
    /// eigenvalues are stored in the beginning of `eval`.
    #[doc(alias = "gsl_eigen_nonsymm")]
    pub fn nonsymm(&mut self, A: &mut MatrixF64, eval: &mut VectorComplexF64) -> Value {
        Value::from(unsafe {
            sys::gsl_eigen_nonsymm(
                A.unwrap_unique(),
                eval.unwrap_unique(),
                self.unwrap_unique(),
            )
        })
    }

    /// This function is identical to gsl_eigen_nonsymm except that it also computes the Schur
    /// vectors and stores them into `Z`.
    #[doc(alias = "gsl_eigen_nonsymm_Z")]
    pub fn nonsymm_Z(
        &mut self,
        A: &mut MatrixF64,
        eval: &mut VectorComplexF64,
        Z: &mut MatrixF64,
    ) -> Value {
        Value::from(unsafe {
            sys::gsl_eigen_nonsymm_Z(
                A.unwrap_unique(),
                eval.unwrap_unique(),
                Z.unwrap_unique(),
                self.unwrap_unique(),
            )
        })
    }

    pub fn n_evals(&self) -> usize {
        unsafe { (*self.unwrap_shared()).n_evals }
    }
}

ffi_wrapper!(
    EigenNonSymmetricVWorkspace,
    *mut sys::gsl_eigen_nonsymmv_workspace,
    gsl_eigen_nonsymmv_free
);

impl EigenNonSymmetricVWorkspace {
    /// This function allocates a workspace for computing eigenvalues and eigenvectors of n-by-n
    /// real nonsymmetric matrices. The size of the workspace is O(5n).
    #[doc(alias = "gsl_eigen_nonsymmv_alloc")]
    pub fn new(n: usize) -> Option<Self> {
        let tmp = unsafe { sys::gsl_eigen_nonsymmv_alloc(n) };

        if tmp.is_null() {
            None
        } else {
            Some(Self::wrap(tmp))
        }
    }

    /// This function sets parameters which determine how the eigenvalue problem is solved in
    /// subsequent calls to gsl_eigen_nonsymmv. If `balance` is set to 1, a balancing transformation
    /// is applied to the matrix. See gsl_eigen_nonsymm_params for more information. Balancing is
    /// turned off by default since it does not preserve the orthogonality of the Schur vectors.
    #[doc(alias = "gsl_eigen_nonsymmv_params")]
    pub fn params(&mut self, balance: i32) {
        unsafe { sys::gsl_eigen_nonsymmv_params(balance, self.unwrap_unique()) }
    }

    /// This function computes eigenvalues and right eigenvectors of the n-by-n real nonsymmetric
    /// matrix `A`. It first calls gsl_eigen_nonsymm to compute the eigenvalues, Schur form T, and
    /// Schur vectors. Then it finds eigenvectors of T and backtransforms them using the Schur
    /// vectors. The Schur vectors are destroyed in the process, but can be saved by using
    /// gsl_eigen_nonsymmv_Z. The computed eigenvectors are normalized to have unit magnitude. On
    /// output, the upper portion of `A` contains the Schur form T. If gsl_eigen_nonsymm fails, no
    /// eigenvectors are computed, and an error code is returned.
    #[doc(alias = "gsl_eigen_nonsymmv")]
    pub fn nonsymmv(
        &mut self,
        A: &mut MatrixF64,
        eval: &mut VectorComplexF64,
        evec: &mut MatrixComplexF64,
    ) -> Value {
        Value::from(unsafe {
            sys::gsl_eigen_nonsymmv(
                A.unwrap_unique(),
                eval.unwrap_unique(),
                evec.unwrap_unique(),
                self.unwrap_unique(),
            )
        })
    }

    /// This function is identical to gsl_eigen_nonsymmv except that it also saves the Schur vectors
    /// into `Z`.
    #[doc(alias = "gsl_eigen_nonsymmv_Z")]
    pub fn nonsymmv_Z(
        &mut self,
        A: &mut MatrixF64,
        eval: &mut VectorComplexF64,
        evec: &mut MatrixComplexF64,
        Z: &mut MatrixF64,
    ) -> Value {
        Value::from(unsafe {
            sys::gsl_eigen_nonsymmv_Z(
                A.unwrap_unique(),
                eval.unwrap_unique(),
                evec.unwrap_unique(),
                Z.unwrap_unique(),
                self.unwrap_unique(),
            )
        })
    }
}

ffi_wrapper!(
    EigenGenSymmWorkspace,
    *mut sys::gsl_eigen_gensymm_workspace,
    gsl_eigen_gensymm_free
);

impl EigenGenSymmWorkspace {
    /// This function allocates a workspace for computing eigenvalues of n-by-n real generalized
    /// symmetric-definite eigensystems. The size of the workspace is O(2n).
    #[doc(alias = "gsl_eigen_gensymm_alloc")]
    pub fn new(n: usize) -> Option<Self> {
        let tmp = unsafe { sys::gsl_eigen_gensymm_alloc(n) };

        if tmp.is_null() {
            None
        } else {
            Some(Self::wrap(tmp))
        }
    }

    /// This function computes the eigenvalues of the real generalized symmetric-definite matrix
    /// pair (A, B), and stores them in `eval`, using the method outlined above. On output, `B`
    /// contains its Cholesky decomposition and `A` is destroyed.
    #[doc(alias = "gsl_eigen_gensymm")]
    pub fn gensymm(&mut self, mut A: MatrixF64, B: &mut MatrixF64, eval: &mut VectorF64) -> Value {
        Value::from(unsafe {
            sys::gsl_eigen_gensymm(
                A.unwrap_unique(),
                B.unwrap_unique(),
                eval.unwrap_unique(),
                self.unwrap_unique(),
            )
        })
    }
}

ffi_wrapper!(
    EigenGenSymmVWorkspace,
    *mut sys::gsl_eigen_gensymmv_workspace,
    gsl_eigen_gensymmv_free
);

impl EigenGenSymmVWorkspace {
    /// This function allocates a workspace for computing eigenvalues and eigenvectors of n-by-n
    /// real generalized symmetric-definite eigensystems. The size of the workspace is O(4n).
    #[doc(alias = "gsl_eigen_gensymmv_alloc")]
    pub fn new(n: usize) -> Option<Self> {
        let tmp = unsafe { sys::gsl_eigen_gensymmv_alloc(n) };

        if tmp.is_null() {
            None
        } else {
            Some(Self::wrap(tmp))
        }
    }

    /// This function computes the eigenvalues and eigenvectors of the real generalized
    /// symmetric-definite matrix pair (A, B), and stores them in `eval` and `evec` respectively.
    /// The computed eigenvectors are normalized to have unit magnitude. On output, `B` contains its
    /// Cholesky decomposition and `A` is destroyed.
    #[doc(alias = "gsl_eigen_gensymmv")]
    pub fn gensymmv(
        &mut self,
        mut A: MatrixF64,
        B: &mut MatrixF64,
        eval: &mut VectorF64,
        evec: &mut MatrixF64,
    ) -> Value {
        Value::from(unsafe {
            sys::gsl_eigen_gensymmv(
                A.unwrap_unique(),
                B.unwrap_unique(),
                eval.unwrap_unique(),
                evec.unwrap_unique(),
                self.unwrap_unique(),
            )
        })
    }
}

ffi_wrapper!(
    EigenGenHermWorkspace,
    *mut sys::gsl_eigen_genherm_workspace,
    gsl_eigen_genherm_free
);

impl EigenGenHermWorkspace {
    /// This function allocates a workspace for computing eigenvalues of n-by-n complex generalized
    /// hermitian-definite eigensystems. The size of the workspace is O(3n).
    #[doc(alias = "gsl_eigen_genherm_alloc")]
    pub fn new(n: usize) -> Option<Self> {
        let tmp = unsafe { sys::gsl_eigen_genherm_alloc(n) };

        if tmp.is_null() {
            None
        } else {
            Some(Self::wrap(tmp))
        }
    }

    /// This function computes the eigenvalues of the complex generalized hermitian-definite matrix
    /// pair (A, B), and stores them in `eval`, using the method outlined above. On output, `B`
    /// contains its Cholesky decomposition and `A` is destroyed.
    #[doc(alias = "gsl_eigen_genherm")]
    pub fn genherm(
        &mut self,
        mut A: MatrixComplexF64,
        B: &mut MatrixComplexF64,
        eval: &mut VectorF64,
    ) -> Value {
        Value::from(unsafe {
            sys::gsl_eigen_genherm(
                A.unwrap_unique(),
                B.unwrap_unique(),
                eval.unwrap_unique(),
                self.unwrap_unique(),
            )
        })
    }
}

ffi_wrapper!(
    EigenGenHermVWorkspace,
    *mut sys::gsl_eigen_genhermv_workspace,
    gsl_eigen_genhermv_free
);

impl EigenGenHermVWorkspace {
    /// This function allocates a workspace for computing eigenvalues of n-by-n complex generalized
    /// hermitian-definite eigensystems. The size of the workspace is O(3n).
    #[doc(alias = "gsl_eigen_genhermv_alloc")]
    pub fn new(n: usize) -> Option<Self> {
        let tmp = unsafe { sys::gsl_eigen_genhermv_alloc(n) };

        if tmp.is_null() {
            None
        } else {
            Some(Self::wrap(tmp))
        }
    }

    /// This function computes the eigenvalues of the complex generalized hermitian-definite matrix
    /// pair (A, B), and stores them in `eval`, using the method outlined above. On output, `B`
    /// contains its Cholesky decomposition and `A` is destroyed.
    #[doc(alias = "gsl_eigen_genhermv")]
    pub fn genhermv(
        &mut self,
        mut A: MatrixComplexF64,
        B: &mut MatrixComplexF64,
        eval: &mut VectorF64,
        evec: &mut MatrixComplexF64,
    ) -> Value {
        Value::from(unsafe {
            sys::gsl_eigen_genhermv(
                A.unwrap_unique(),
                B.unwrap_unique(),
                eval.unwrap_unique(),
                evec.unwrap_unique(),
                self.unwrap_unique(),
            )
        })
    }
}

ffi_wrapper!(
    EigenGenWorkspace,
    *mut sys::gsl_eigen_gen_workspace,
    gsl_eigen_gen_free
);

impl EigenGenWorkspace {
    /// This function allocates a workspace for computing eigenvalues of n-by-n real generalized
    /// nonsymmetric eigensystems. The size of the workspace is O(n).
    #[doc(alias = "gsl_eigen_gen_alloc")]
    pub fn new(n: usize) -> Option<Self> {
        let tmp = unsafe { sys::gsl_eigen_gen_alloc(n) };

        if tmp.is_null() {
            None
        } else {
            Some(Self::wrap(tmp))
        }
    }

    /// This function sets some parameters which determine how the eigenvalue problem is solved in
    /// subsequent calls to gsl_eigen_gen.
    ///
    /// If compute_s is set to 1, the full Schur form S will be computed by gsl_eigen_gen. If it is
    /// set to 0, S will not be computed (this is the default setting). S is a quasi upper
    /// triangular matrix with 1-by-1 and 2-by-2 blocks on its diagonal. 1-by-1 blocks correspond to
    /// real eigenvalues, and 2-by-2 blocks correspond to complex eigenvalues.
    ///
    /// If compute_t is set to 1, the full Schur form T will be computed by gsl_eigen_gen. If it is
    /// set to 0, T will not be computed (this is the default setting). T is an upper triangular
    /// matrix with non-negative elements on its diagonal. Any 2-by-2 blocks in S will correspond to
    /// a 2-by-2 diagonal block in T.
    ///
    /// The balance parameter is currently ignored, since generalized balancing is not yet
    /// implemented.
    #[doc(alias = "gsl_eigen_gen_params")]
    pub fn params(&mut self, compute_s: i32, compute_t: i32, balance: i32) {
        unsafe { sys::gsl_eigen_gen_params(compute_s, compute_t, balance, self.unwrap_unique()) }
    }

    /// This function computes the eigenvalues of the real generalized nonsymmetric matrix pair
    /// (A, B), and stores them as pairs in (alpha, beta), where alpha is complex and beta is real.
    /// If \beta_i is non-zero, then \lambda = \alpha_i / \beta_i is an eigenvalue. Likewise, if
    /// \alpha_i is non-zero, then \mu = \beta_i / \alpha_i is an eigenvalue of the alternate
    /// problem \mu A y = B y. The elements of beta are normalized to be non-negative.
    ///
    /// If S is desired, it is stored in A on output. If T is desired, it is stored in B on output.
    /// The ordering of eigenvalues in (alpha, beta) follows the ordering of the diagonal blocks in
    /// the Schur forms S and T. In rare cases, this function may fail to find all eigenvalues. If
    /// this occurs, an error code is returned.
    #[doc(alias = "gsl_eigen_gen")]
    pub fn gen(
        &mut self,
        A: &mut MatrixF64,
        B: &mut MatrixF64,
        alpha: &mut VectorComplexF64,
        beta: &mut VectorF64,
    ) -> Value {
        Value::from(unsafe {
            sys::gsl_eigen_gen(
                A.unwrap_unique(),
                B.unwrap_unique(),
                alpha.unwrap_unique(),
                beta.unwrap_unique(),
                self.unwrap_unique(),
            )
        })
    }

    /// This function is identical to gsl_eigen_gen except that it also computes the left and right
    /// Schur vectors and stores them into `Q` and `Z` respectively.
    #[doc(alias = "gsl_eigen_gen_QZ")]
    pub fn gen_QZ(
        &mut self,
        A: &mut MatrixF64,
        B: &mut MatrixF64,
        alpha: &mut VectorComplexF64,
        beta: &mut VectorF64,
        Q: &mut MatrixF64,
        Z: &mut MatrixF64,
    ) -> Value {
        Value::from(unsafe {
            sys::gsl_eigen_gen_QZ(
                A.unwrap_unique(),
                B.unwrap_unique(),
                alpha.unwrap_unique(),
                beta.unwrap_unique(),
                Q.unwrap_unique(),
                Z.unwrap_unique(),
                self.unwrap_unique(),
            )
        })
    }
}

ffi_wrapper!(
    EigenGenVWorkspace,
    *mut sys::gsl_eigen_genv_workspace,
    gsl_eigen_genv_free
);

impl EigenGenVWorkspace {
    /// This function allocates a workspace for computing eigenvalues of n-by-n real generalized
    /// nonsymmetric eigensystems. The size of the workspace is O(n).
    #[doc(alias = "gsl_eigen_genv_alloc")]
    pub fn new(n: usize) -> Option<Self> {
        let tmp = unsafe { sys::gsl_eigen_genv_alloc(n) };

        if tmp.is_null() {
            None
        } else {
            Some(Self::wrap(tmp))
        }
    }

    /// This function computes eigenvalues and right eigenvectors of the n-by-n real generalized
    /// nonsymmetric matrix pair (A, B). The eigenvalues are stored in (alpha, beta) and the
    /// eigenvectors are stored in evec. It first calls gsl_eigen_gen to compute the eigenvalues,
    /// Schur forms, and Schur vectors. Then it finds eigenvectors of the Schur forms and
    /// backtransforms them using the Schur vectors. The Schur vectors are destroyed in the process,
    /// but can be saved by using gsl_eigen_genv_QZ. The computed eigenvectors are normalized to
    /// have unit magnitude. On output, (A, B) contains the generalized Schur form (S, T). If
    /// gsl_eigen_gen fails, no eigenvectors are computed, and an error code is returned.
    #[doc(alias = "gsl_eigen_genv")]
    pub fn genv(
        &mut self,
        A: &mut MatrixF64,
        B: &mut MatrixF64,
        alpha: &mut VectorComplexF64,
        beta: &mut VectorF64,
        evec: &mut MatrixComplexF64,
    ) -> Value {
        Value::from(unsafe {
            sys::gsl_eigen_genv(
                A.unwrap_unique(),
                B.unwrap_unique(),
                alpha.unwrap_unique(),
                beta.unwrap_unique(),
                evec.unwrap_unique(),
                self.unwrap_unique(),
            )
        })
    }

    /// This function is identical to gsl_eigen_genv except that it also computes the left and right
    /// Schur vectors and stores them into `Q` and `Z` respectively.
    #[doc(alias = "gsl_eigen_genv_QZ")]
    pub fn genv_QZ(
        &mut self,
        A: &mut MatrixF64,
        B: &mut MatrixF64,
        alpha: &mut VectorComplexF64,
        beta: &mut VectorF64,
        evec: &mut MatrixComplexF64,
        Q: &mut MatrixF64,
        Z: &mut MatrixF64,
    ) -> Value {
        Value::from(unsafe {
            sys::gsl_eigen_genv_QZ(
                A.unwrap_unique(),
                B.unwrap_unique(),
                alpha.unwrap_unique(),
                beta.unwrap_unique(),
                evec.unwrap_unique(),
                Q.unwrap_unique(),
                Z.unwrap_unique(),
                self.unwrap_unique(),
            )
        })
    }
}

#[test]
fn eigen_symmetric_workspace() {
    use MatrixF64;
    use VectorF64;

    let mut e = EigenSymmetricWorkspace::new(2).unwrap();
    let mut m = MatrixF64::new(2, 2).unwrap();

    let data = [5., 5., 1., 6.];
    m.set(0, 0, data[0]);
    m.set(0, 1, data[1]);
    m.set(1, 0, data[2]);
    m.set(1, 1, data[3]);
    let mut v = VectorF64::new(2).unwrap();
    e.symm(&mut m, &mut v);
    assert_eq!(&format!("{:.4} {:.4}", v.get(0), v.get(1)), "4.3820 6.6180");
}

// C code:
//
// ```ignore
// #include <gsl/gsl_eigen.h>
// #include <gsl/gsl_matrix.h>
//
// int main() {
//     gsl_eigen_symmv_workspace *t = gsl_eigen_symmv_alloc(3);
//     double data[] = {5., 5., 1., 6.};
//     gsl_matrix *m = gsl_matrix_calloc(2, 2);
//     gsl_matrix_set(m, 0, 0, data[0]);
//     gsl_matrix_set(m, 0, 1, data[1]);
//     gsl_matrix_set(m, 1, 0, data[2]);
//     gsl_matrix_set(m, 1, 1, data[3]);
//     gsl_vector *v = gsl_vector_calloc(2);
//     gsl_matrix *m2 = gsl_matrix_calloc(2, 2);
//     gsl_eigen_symmv(m, v, m2, t);
//     printf("%f %f\n", gsl_vector_get(v, 0), gsl_vector_get(v, 1));
//     printf("%f %f\n", gsl_matrix_get(m2, 0, 0), gsl_matrix_get(m2, 0, 1));
//     printf("%f %f\n", gsl_matrix_get(m2, 1, 0), gsl_matrix_get(m2, 1, 1));
//     gsl_eigen_symmv_free(t);
//     gsl_vector_free(v);
//     gsl_matrix_free(m);
//     gsl_matrix_free(m2);
//     return 0;
// }
// ```
#[test]
fn eigen_symmetric_vworkspace() {
    use MatrixF64;
    use VectorF64;

    let mut e = EigenSymmetricVWorkspace::new(3).unwrap();
    let data = [5., 5., 1., 6.];
    let mut m = MatrixF64::new(2, 2).unwrap();

    m.set(0, 0, data[0]);
    m.set(0, 1, data[1]);
    m.set(1, 0, data[2]);
    m.set(1, 1, data[3]);
    let mut m2 = MatrixF64::new(2, 2).unwrap();
    let mut v = VectorF64::new(2).unwrap();
    e.symmv(&mut m, &mut v, &mut m2);
    assert_eq!(&format!("{:.4} {:.4}", v.get(0), v.get(1)), "4.3820 6.6180");
    assert_eq!(
        &format!("{:.4} {:.4}", m2.get(0, 0), m2.get(0, 1)),
        "0.8507 0.5257"
    );
    assert_eq!(
        &format!("{:.4} {:.4}", m2.get(1, 0), m2.get(1, 1)),
        "-0.5257 0.8507"
    );
}

// C code:
//
// ```ignore
// #include <gsl/gsl_eigen.h>
// #include <gsl/gsl_matrix.h>
// #include <gsl/gsl_complex_math.h>
//
// int main() {
//     gsl_eigen_herm_workspace *t = gsl_eigen_herm_alloc(3);
//     gsl_matrix_complex *m = gsl_matrix_complex_calloc(2, 2);
//     gsl_complex c1 = gsl_complex_rect(5., 5.);
//     gsl_complex c2 = gsl_complex_rect(1., 4.);
//     gsl_complex c3 = gsl_complex_rect(2., 3.);
//     gsl_complex c4 = gsl_complex_rect(5., 7.);
//     gsl_matrix_complex_set(m, 0, 0, c1);
//     gsl_matrix_complex_set(m, 0, 1, c2);
//     gsl_matrix_complex_set(m, 1, 0, c3);
//     gsl_matrix_complex_set(m, 1, 1, c4);
//     gsl_vector *v = gsl_vector_calloc(2);
//     gsl_eigen_herm(m, v, t);
//     printf("%f %f\n", gsl_vector_get(v, 0), gsl_vector_get(v, 1));
//     gsl_eigen_herm_free(t);
//     gsl_vector_free(v);
//     gsl_matrix_complex_free(m);
//     return 0;
// }
// ```
#[test]
fn eigen_hermitian_workspace() {
    use ComplexF64;
    use MatrixComplexF64;
    use VectorF64;

    let mut e = EigenHermitianWorkspace::new(3).unwrap();
    let mut m = MatrixComplexF64::new(2, 2).unwrap();

    m.set(0, 0, &ComplexF64::rect(5., 5.));
    m.set(0, 1, &ComplexF64::rect(1., 4.));
    m.set(1, 0, &ComplexF64::rect(2., 3.));
    m.set(1, 1, &ComplexF64::rect(5., 7.));

    let mut v = VectorF64::new(2).unwrap();
    e.herm(&mut m, &mut v);
    assert_eq!(&format!("{:.4} {:.4}", v.get(0), v.get(1)), "8.6056 1.3944");
}

// C code:
//
// ```ignore
// #include <gsl/gsl_eigen.h>
// #include <gsl/gsl_matrix.h>
// #include <gsl/gsl_complex_math.h>
//
// int main() {
//     gsl_eigen_hermv_workspace *t = gsl_eigen_hermv_alloc(3);
//     gsl_matrix_complex *m = gsl_matrix_complex_calloc(2, 2);
//     gsl_complex c1 = gsl_complex_rect(5., 5.);
//     gsl_complex c2 = gsl_complex_rect(1., 4.);
//     gsl_complex c3 = gsl_complex_rect(2., 3.);
//     gsl_complex c4 = gsl_complex_rect(5., 7.);
//     gsl_matrix_complex_set(m, 0, 0, c1);
//     gsl_matrix_complex_set(m, 0, 1, c2);
//     gsl_matrix_complex_set(m, 1, 0, c3);
//     gsl_matrix_complex_set(m, 1, 1, c4);
//     gsl_vector *v = gsl_vector_calloc(2);
//     gsl_matrix_complex *m2 = gsl_matrix_complex_calloc(2, 2);
//     gsl_eigen_hermv(m, v, m2, t);
//     printf("%f %f\n", gsl_vector_get(v, 0), gsl_vector_get(v, 1));
//     printf("(%f, %f) (%f, %f)\n",
//            gsl_matrix_complex_get(m2, 0, 0).dat[0], gsl_matrix_complex_get(m2, 0, 0).dat[1],
//            gsl_matrix_complex_get(m2, 0, 1).dat[0], gsl_matrix_complex_get(m2, 0, 1).dat[1]);
//     printf("(%f, %f) (%f, %f)\n",
//            gsl_matrix_complex_get(m2, 1, 0).dat[0], gsl_matrix_complex_get(m2, 1, 0).dat[1],
//            gsl_matrix_complex_get(m2, 1, 1).dat[0], gsl_matrix_complex_get(m2, 1, 1).dat[1]);
//     gsl_eigen_hermv_free(t);
//     gsl_vector_free(v);
//     gsl_matrix_complex_free(m);
//     gsl_matrix_complex_free(m2);
//     return 0;
// }
// ```
#[test]
fn eigen_hermitian_vworkspace() {
    use ComplexF64;

    let mut e = EigenHermitianVWorkspace::new(3).unwrap();
    let mut m = MatrixComplexF64::new(2, 2).unwrap();

    m.set(0, 0, &ComplexF64::rect(5., 5.));
    m.set(0, 1, &ComplexF64::rect(1., 4.));
    m.set(1, 0, &ComplexF64::rect(2., 3.));
    m.set(1, 1, &ComplexF64::rect(5., 7.));

    let mut v = VectorF64::new(2).unwrap();
    let mut m2 = MatrixComplexF64::new(2, 2).unwrap();
    e.hermv(&mut m, &mut v, &mut m2);
    assert_eq!(&format!("{:.4} {:.4}", v.get(0), v.get(1)), "8.6056 1.3944");
    assert_eq!(
        &format!(
            "({:.4}, {:.4}) ({:.4}, {:.4})",
            m2.get(0, 0).dat[0],
            m2.get(0, 0).dat[1],
            m2.get(0, 1).dat[0],
            m2.get(0, 1).dat[1]
        ),
        "(0.7071, 0.0000) (0.7071, 0.0000)"
    );
    assert_eq!(
        &format!(
            "({:.4}, {:.4}) ({:.4}, {:.4})",
            m2.get(1, 0).dat[0],
            m2.get(1, 0).dat[1],
            m2.get(1, 1).dat[0],
            m2.get(1, 1).dat[1]
        ),
        "(0.3922, 0.5883) (-0.3922, -0.5883)"
    );
}