1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
//
// A rust binding for the GSL library by Guillaume Gomez (guillaume1.gomez@gmail.com)
//

//! The Legendre Functions and Legendre Polynomials are described in Abramowitz & Stegun, Chapter 8.

pub mod polynomials {
    use crate::Value;
    use std::mem::MaybeUninit;

    /// This function evaluates the Legendre polynomials P_l(x) using explicit representations for l=1, 2, 3.
    #[doc(alias = "gsl_sf_legendre_P1")]
    pub fn legendre_P1(x: f64) -> f64 {
        unsafe { sys::gsl_sf_legendre_P1(x) }
    }

    /// This function evaluates the Legendre polynomials P_l(x) using explicit representations for l=1, 2, 3.
    #[doc(alias = "gsl_sf_legendre_P2")]
    pub fn legendre_P2(x: f64) -> f64 {
        unsafe { sys::gsl_sf_legendre_P2(x) }
    }

    /// This function evaluates the Legendre polynomials P_l(x) using explicit representations for l=1, 2, 3.
    #[doc(alias = "gsl_sf_legendre_P3")]
    pub fn legendre_P3(x: f64) -> f64 {
        unsafe { sys::gsl_sf_legendre_P3(x) }
    }

    /// This function evaluates the Legendre polynomials P_l(x) using explicit representations for l=1, 2, 3.
    #[doc(alias = "gsl_sf_legendre_P1_e")]
    pub fn legendre_P1_e(x: f64) -> (Value, ::types::Result) {
        let mut result = MaybeUninit::<sys::gsl_sf_result>::uninit();
        let ret = unsafe { sys::gsl_sf_legendre_P1_e(x, result.as_mut_ptr()) };

        (Value::from(ret), unsafe { result.assume_init() }.into())
    }

    /// This function evaluates the Legendre polynomials P_l(x) using explicit representations for l=1, 2, 3.
    #[doc(alias = "gsl_sf_legendre_P2_e")]
    pub fn legendre_P2_e(x: f64) -> (Value, ::types::Result) {
        let mut result = MaybeUninit::<sys::gsl_sf_result>::uninit();
        let ret = unsafe { sys::gsl_sf_legendre_P2_e(x, result.as_mut_ptr()) };

        (Value::from(ret), unsafe { result.assume_init() }.into())
    }

    /// This function evaluates the Legendre polynomials P_l(x) using explicit representations for l=1, 2, 3.
    #[doc(alias = "gsl_sf_legendre_P3_e")]
    pub fn legendre_P3_e(x: f64) -> (Value, ::types::Result) {
        let mut result = MaybeUninit::<sys::gsl_sf_result>::uninit();
        let ret = unsafe { sys::gsl_sf_legendre_P3_e(x, result.as_mut_ptr()) };

        (Value::from(ret), unsafe { result.assume_init() }.into())
    }

    /// This function evaluates the Legendre polynomial P_l(x) for a specific value of l, x subject to l >= 0, |x| <= 1
    #[doc(alias = "gsl_sf_legendre_Pl")]
    pub fn legendre_Pl(l: i32, x: f64) -> f64 {
        unsafe { sys::gsl_sf_legendre_Pl(l, x) }
    }

    /// This function evaluates the Legendre polynomial P_l(x) for a specific value of l, x subject to l >= 0, |x| <= 1
    #[doc(alias = "gsl_sf_legendre_Pl_e")]
    pub fn legendre_Pl_e(l: i32, x: f64) -> (Value, ::types::Result) {
        let mut result = MaybeUninit::<sys::gsl_sf_result>::uninit();
        let ret = unsafe { sys::gsl_sf_legendre_Pl_e(l, x, result.as_mut_ptr()) };

        (Value::from(ret), unsafe { result.assume_init() }.into())
    }

    /// This function computes arrays of Legendre polynomials P_l(x) and derivatives dP_l(x)/dx, for l = 0, \dots, lmax, |x| <= 1
    #[doc(alias = "gsl_sf_legendre_Pl_array")]
    pub fn legendre_Pl_array(x: f64, result_array: &mut [f64]) -> Value {
        Value::from(unsafe {
            sys::gsl_sf_legendre_Pl_array(result_array.len() as i32, x, result_array.as_mut_ptr())
        })
    }

    /// This function computes arrays of Legendre polynomials P_l(x) and derivatives dP_l(x)/dx, for l = 0, \dots, lmax, |x| <= 1
    #[doc(alias = "gsl_sf_legendre_Pl_deriv_array")]
    pub fn legendre_Pl_deriv_array(
        x: f64,
        result_array: &mut [f64],
        result_deriv_array: &mut [f64],
    ) -> Value {
        Value::from(unsafe {
            sys::gsl_sf_legendre_Pl_deriv_array(
                result_array.len() as _,
                x,
                result_array.as_mut_ptr(),
                result_deriv_array.as_mut_ptr(),
            )
        })
    }

    /// This function computes the Legendre function Q_0(x) for x > -1, x != 1
    #[doc(alias = "gsl_sf_legendre_Q0")]
    pub fn legendre_Q0(x: f64) -> f64 {
        unsafe { sys::gsl_sf_legendre_Q0(x) }
    }

    /// This function computes the Legendre function Q_0(x) for x > -1, x != 1
    #[doc(alias = "gsl_sf_legendre_Q0_e")]
    pub fn legendre_Q0_e(x: f64) -> (Value, ::types::Result) {
        let mut result = MaybeUninit::<sys::gsl_sf_result>::uninit();
        let ret = unsafe { sys::gsl_sf_legendre_Q0_e(x, result.as_mut_ptr()) };

        (Value::from(ret), unsafe { result.assume_init() }.into())
    }

    /// This function computes the Legendre function Q_0(x) for x > -1, x != 1.
    #[doc(alias = "gsl_sf_legendre_Q1")]
    pub fn legendre_Q1(x: f64) -> f64 {
        unsafe { sys::gsl_sf_legendre_Q1(x) }
    }

    /// This function computes the Legendre function Q_0(x) for x > -1, x != 1.
    #[doc(alias = "gsl_sf_legendre_Q1_e")]
    pub fn legendre_Q1_e(x: f64) -> (Value, ::types::Result) {
        let mut result = MaybeUninit::<sys::gsl_sf_result>::uninit();
        let ret = unsafe { sys::gsl_sf_legendre_Q1_e(x, result.as_mut_ptr()) };

        (Value::from(ret), unsafe { result.assume_init() }.into())
    }

    /// This function computes the Legendre function Q_l(x) for x > -1, x != 1 and l >= 0.
    #[doc(alias = "gsl_sf_legendre_Ql")]
    pub fn legendre_Ql(l: i32, x: f64) -> f64 {
        unsafe { sys::gsl_sf_legendre_Ql(l, x) }
    }

    /// This function computes the Legendre function Q_l(x) for x > -1, x != 1 and l >= 0.
    #[doc(alias = "gsl_sf_legendre_Ql_e")]
    pub fn legendre_Ql_e(l: i32, x: f64) -> (Value, ::types::Result) {
        let mut result = MaybeUninit::<sys::gsl_sf_result>::uninit();
        let ret = unsafe { sys::gsl_sf_legendre_Ql_e(l, x, result.as_mut_ptr()) };

        (Value::from(ret), unsafe { result.assume_init() }.into())
    }
}

/// The following functions compute the associated Legendre Polynomials P_l^m(x).
/// Note that this function grows combinatorially with l and can overflow for l larger than about 150.
/// There is no trouble for small m, but overflow occurs when m and l are both large.
/// Rather than allow overflows, these functions refuse to calculate P_l^m(x) and return [`OvrFlw`](enums/type.Value.html) when they can sense that l and m are too big.
///
/// If you want to calculate a spherical harmonic, then do not use these functions. Instead use [`legendre_sphPlm`](fn.legendre_sphPlm.html) below, which uses a similar recursion, but with the normalized functions.
pub mod associated_polynomials {
    use crate::enums;
    use crate::Value;
    use std::mem::MaybeUninit;

    /// This routine computes the associated Legendre polynomial P_l^m(x) for m >= 0, l >= m, |x| <= 1.
    #[doc(alias = "gsl_sf_legendre_Plm")]
    pub fn legendre_Plm(l: i32, m: i32, x: f64) -> f64 {
        unsafe { sys::gsl_sf_legendre_Plm(l, m, x) }
    }

    /// This routine computes the associated Legendre polynomial P_l^m(x) for m >= 0, l >= m, |x| <= 1.
    #[doc(alias = "gsl_sf_legendre_Plm_e")]
    pub fn legendre_Plm_e(l: i32, m: i32, x: f64) -> (Value, ::types::Result) {
        let mut result = MaybeUninit::<sys::gsl_sf_result>::uninit();
        let ret = unsafe { sys::gsl_sf_legendre_Plm_e(l, m, x, result.as_mut_ptr()) };

        (Value::from(ret), unsafe { result.assume_init() }.into())
    }

    /// This routine computes the normalized associated Legendre polynomial \sqrt{(2l+1)/(4\pi)} \sqrt{(l-m)!/(l+m)!} P_l^m(x) suitable for use in spherical harmonics.
    /// The parameters must satisfy m >= 0, l >= m, |x| <= 1.
    /// This routine avoids the overflows that occur for the standard normalization of P_l^m(x).
    #[doc(alias = "gsl_sf_legendre_sphPlm")]
    pub fn legendre_sphPlm(l: i32, m: i32, x: f64) -> f64 {
        unsafe { sys::gsl_sf_legendre_sphPlm(l, m, x) }
    }

    /// This routine computes the normalized associated Legendre polynomial \sqrt{(2l+1)/(4\pi)} \sqrt{(l-m)!/(l+m)!} P_l^m(x) suitable for use in spherical harmonics.
    /// The parameters must satisfy m >= 0, l >= m, |x| <= 1.
    /// This routine avoids the overflows that occur for the standard normalization of P_l^m(x).
    #[doc(alias = "gsl_sf_legendre_sphPlm_e")]
    pub fn legendre_sphPlm_e(l: i32, m: i32, x: f64) -> (Value, ::types::Result) {
        let mut result = MaybeUninit::<sys::gsl_sf_result>::uninit();
        let ret = unsafe { sys::gsl_sf_legendre_sphPlm_e(l, m, x, result.as_mut_ptr()) };

        (Value::from(ret), unsafe { result.assume_init() }.into())
    }

    /// Returns the size of the array needed for these functions, including GSL workspace.
    #[doc(alias = "gsl_sf_legendre_array_n")]
    pub fn legendre_array_n(lmax: usize) -> usize {
        unsafe { sys::gsl_sf_legendre_array_n(lmax as _) }
    }

    #[doc(alias = "gsl_sf_legendre_array_index")]
    pub fn legendre_array_index(l: usize, m: usize) -> usize {
        unsafe { sys::gsl_sf_legendre_array_index(l as _, m as _) }
    }

    #[doc(alias = "gsl_sf_legendre_array")]
    pub fn legendre_array(
        norm: enums::SfLegendreNorm,
        lmax: usize,
        x: f64,
        result: &mut [f64],
    ) -> Value {
        Value::from(unsafe {
            sys::gsl_sf_legendre_array(norm.into(), lmax, x, result.as_mut_ptr())
        })
    }

    #[doc(alias = "gsl_sf_legendre_deriv_array")]
    pub fn legendre_deriv_array(
        norm: enums::SfLegendreNorm,
        lmax: usize,
        x: f64,
        result: &mut [f64],
        deriv: &mut [f64],
    ) -> Value {
        Value::from(unsafe {
            sys::gsl_sf_legendre_deriv_array(
                norm.into(),
                lmax,
                x,
                result.as_mut_ptr(),
                deriv.as_mut_ptr(),
            )
        })
    }
}

/// The Conical Functions P^\mu_{-(1/2)+i\lambda}(x) and Q^\mu_{-(1/2)+i\lambda} are described in Abramowitz & Stegun, Section 8.12.
pub mod conical {
    use crate::Value;
    use std::mem::MaybeUninit;

    /// This routine computes the irregular Spherical Conical Function P^{1/2}_{-1/2 + i \lambda}(x) for x > -1.
    #[doc(alias = "gsl_sf_conicalP_half")]
    pub fn half(lambda: f64, x: f64) -> f64 {
        unsafe { sys::gsl_sf_conicalP_half(lambda, x) }
    }

    /// This routine computes the irregular Spherical Conical Function P^{1/2}_{-1/2 + i \lambda}(x) for x > -1.
    #[doc(alias = "gsl_sf_conicalP_half_e")]
    pub fn half_e(lambda: f64, x: f64) -> (Value, ::types::Result) {
        let mut result = MaybeUninit::<sys::gsl_sf_result>::uninit();
        let ret = unsafe { sys::gsl_sf_conicalP_half_e(lambda, x, result.as_mut_ptr()) };

        (Value::from(ret), unsafe { result.assume_init() }.into())
    }

    /// This routine computes the regular Spherical Conical Function P^{-1/2}_{-1/2 + i \lambda}(x) for x > -1.
    #[doc(alias = "gsl_sf_conicalP_mhalf")]
    pub fn mhalf(lambda: f64, x: f64) -> f64 {
        unsafe { sys::gsl_sf_conicalP_mhalf(lambda, x) }
    }

    /// This routine computes the regular Spherical Conical Function P^{-1/2}_{-1/2 + i \lambda}(x) for x > -1.
    #[doc(alias = "gsl_sf_conicalP_mhalf_e")]
    pub fn mhalf_e(lambda: f64, x: f64) -> (Value, ::types::Result) {
        let mut result = MaybeUninit::<sys::gsl_sf_result>::uninit();
        let ret = unsafe { sys::gsl_sf_conicalP_mhalf_e(lambda, x, result.as_mut_ptr()) };

        (Value::from(ret), unsafe { result.assume_init() }.into())
    }

    /// This routine computes the conical function P^0_{-1/2 + i \lambda}(x) for x > -1.
    #[doc(alias = "gsl_sf_conicalP_0")]
    pub fn _0(lambda: f64, x: f64) -> f64 {
        unsafe { sys::gsl_sf_conicalP_0(lambda, x) }
    }

    /// This routine computes the conical function P^0_{-1/2 + i \lambda}(x) for x > -1.
    #[doc(alias = "gsl_sf_conicalP_0_e")]
    pub fn _0_e(lambda: f64, x: f64) -> (Value, ::types::Result) {
        let mut result = MaybeUninit::<sys::gsl_sf_result>::uninit();
        let ret = unsafe { sys::gsl_sf_conicalP_0_e(lambda, x, result.as_mut_ptr()) };

        (Value::from(ret), unsafe { result.assume_init() }.into())
    }

    /// This routine computes the conical function P^1_{-1/2 + i \lambda}(x) for x > -1.
    #[doc(alias = "gsl_sf_conicalP_1")]
    pub fn _1(lambda: f64, x: f64) -> f64 {
        unsafe { sys::gsl_sf_conicalP_1(lambda, x) }
    }

    /// This routine computes the conical function P^1_{-1/2 + i \lambda}(x) for x > -1.
    #[doc(alias = "gsl_sf_conicalP_1_e")]
    pub fn _1_e(lambda: f64, x: f64) -> (Value, ::types::Result) {
        let mut result = MaybeUninit::<sys::gsl_sf_result>::uninit();
        let ret = unsafe { sys::gsl_sf_conicalP_1_e(lambda, x, result.as_mut_ptr()) };

        (Value::from(ret), unsafe { result.assume_init() }.into())
    }

    /// This routine computes the Regular Spherical Conical Function P^{-1/2-l}_{-1/2 + i \lambda}(x) for x > -1, l >= -1.
    #[doc(alias = "gsl_sf_conicalP_sph_reg")]
    pub fn sph_reg(l: i32, lambda: f64, x: f64) -> f64 {
        unsafe { sys::gsl_sf_conicalP_sph_reg(l, lambda, x) }
    }

    /// This routine computes the Regular Spherical Conical Function P^{-1/2-l}_{-1/2 + i \lambda}(x) for x > -1, l >= -1.
    #[doc(alias = "gsl_sf_conicalP_sph_reg_e")]
    pub fn sph_reg_e(l: i32, lambda: f64, x: f64) -> (Value, ::types::Result) {
        let mut result = MaybeUninit::<sys::gsl_sf_result>::uninit();
        let ret = unsafe { sys::gsl_sf_conicalP_sph_reg_e(l, lambda, x, result.as_mut_ptr()) };

        (Value::from(ret), unsafe { result.assume_init() }.into())
    }

    /// This routine computes the Regular Cylindrical Conical Function P^{-m}_{-1/2 + i \lambda}(x) for x > -1, m >= -1.
    #[doc(alias = "gsl_sf_conicalP_cyl_reg")]
    pub fn cyl_reg(m: i32, lambda: f64, x: f64) -> f64 {
        unsafe { sys::gsl_sf_conicalP_cyl_reg(m, lambda, x) }
    }

    /// This routine computes the Regular Cylindrical Conical Function P^{-m}_{-1/2 + i \lambda}(x) for x > -1, m >= -1.
    #[doc(alias = "gsl_sf_conicalP_cyl_reg_e")]
    pub fn cyl_reg_e(m: i32, lambda: f64, x: f64) -> (Value, ::types::Result) {
        let mut result = MaybeUninit::<sys::gsl_sf_result>::uninit();
        let ret = unsafe { sys::gsl_sf_conicalP_cyl_reg_e(m, lambda, x, result.as_mut_ptr()) };

        (Value::from(ret), unsafe { result.assume_init() }.into())
    }
}

/// The following spherical functions are specializations of Legendre functions which give the regular eigenfunctions of the Laplacian on a 3-dimensional hyperbolic space H3d.
/// Of particular interest is the flat limit, \lambda \to \infty, \eta \to 0, \lambda\eta fixed.
pub mod radial {
    use crate::Value;
    use std::mem::MaybeUninit;

    /// This routine computes the zeroth radial eigenfunction of the Laplacian on the 3-dimensional hyperbolic space, L^{H3d}_0(\lambda,\eta) := \sin(\lambda\eta)/(\lambda\sinh(\eta)) for \eta >= 0.
    /// In the flat limit this takes the form L^{H3d}_0(\lambda,\eta) = j_0(\lambda\eta).
    #[doc(alias = "gsl_sf_legendre_H3d_0")]
    pub fn legendre_H3d_0(lambda: f64, eta: f64) -> f64 {
        unsafe { sys::gsl_sf_legendre_H3d_0(lambda, eta) }
    }

    /// This routine computes the zeroth radial eigenfunction of the Laplacian on the 3-dimensional hyperbolic space, L^{H3d}_0(\lambda,\eta) := \sin(\lambda\eta)/(\lambda\sinh(\eta)) for \eta >= 0.
    /// In the flat limit this takes the form L^{H3d}_0(\lambda,\eta) = j_0(\lambda\eta).
    #[doc(alias = "gsl_sf_legendre_H3d_0_e")]
    pub fn legendre_H3d_0_e(lambda: f64, eta: f64) -> (Value, ::types::Result) {
        let mut result = MaybeUninit::<sys::gsl_sf_result>::uninit();
        let ret = unsafe { sys::gsl_sf_legendre_H3d_0_e(lambda, eta, result.as_mut_ptr()) };

        (Value::from(ret), unsafe { result.assume_init() }.into())
    }

    /// This routine computes the first radial eigenfunction of the Laplacian on the 3-dimensional hyperbolic space, L^{H3d}_1(\lambda,\eta) := 1/\sqrt{\lambda^2 + 1} \sin(\lambda \eta)/(\lambda \sinh(\eta))
    /// (\coth(\eta) - \lambda \cot(\lambda\eta)) for \eta >= 0.
    /// In the flat limit this takes the form L^{H3d}_1(\lambda,\eta) = j_1(\lambda\eta).
    #[doc(alias = "gsl_sf_legendre_H3d_1")]
    pub fn legendre_H3d_1(lambda: f64, eta: f64) -> f64 {
        unsafe { sys::gsl_sf_legendre_H3d_1(lambda, eta) }
    }

    /// This routine computes the first radial eigenfunction of the Laplacian on the 3-dimensional hyperbolic space, L^{H3d}_1(\lambda,\eta) := 1/\sqrt{\lambda^2 + 1} \sin(\lambda \eta)/(\lambda \sinh(\eta))
    /// (\coth(\eta) - \lambda \cot(\lambda\eta)) for \eta >= 0.
    /// In the flat limit this takes the form L^{H3d}_1(\lambda,\eta) = j_1(\lambda\eta).
    #[doc(alias = "gsl_sf_legendre_H3d_1_e")]
    pub fn legendre_H3d_1_e(lambda: f64, eta: f64) -> (Value, ::types::Result) {
        let mut result = MaybeUninit::<sys::gsl_sf_result>::uninit();
        let ret = unsafe { sys::gsl_sf_legendre_H3d_1_e(lambda, eta, result.as_mut_ptr()) };

        (Value::from(ret), unsafe { result.assume_init() }.into())
    }

    /// This routine computes the l-th radial eigenfunction of the Laplacian on the 3-dimensional hyperbolic space \eta >= 0, l >= 0. In the flat limit this takes the form L^{H3d}_l(\lambda,\eta) = j_l(\lambda\eta).
    #[doc(alias = "gsl_sf_legendre_H3d")]
    pub fn legendre_H3d(l: i32, lambda: f64, eta: f64) -> f64 {
        unsafe { sys::gsl_sf_legendre_H3d(l, lambda, eta) }
    }

    /// This routine computes the l-th radial eigenfunction of the Laplacian on the 3-dimensional hyperbolic space \eta >= 0, l >= 0. In the flat limit this takes the form L^{H3d}_l(\lambda,\eta) = j_l(\lambda\eta).
    #[doc(alias = "gsl_sf_legendre_H3d_e")]
    pub fn legendre_H3d_e(l: i32, lambda: f64, eta: f64) -> (Value, ::types::Result) {
        let mut result = MaybeUninit::<sys::gsl_sf_result>::uninit();
        let ret = unsafe { sys::gsl_sf_legendre_H3d_e(l, lambda, eta, result.as_mut_ptr()) };

        (Value::from(ret), unsafe { result.assume_init() }.into())
    }

    /// This function computes an array of radial eigenfunctions L^{H3d}_l(\lambda, \eta) for 0 <= l <= lmax.
    #[doc(alias = "gsl_sf_legendre_H3d_array")]
    pub fn legendre_H3d_array(lambda: f64, eta: f64, result_array: &mut [f64]) -> Value {
        Value::from(unsafe {
            sys::gsl_sf_legendre_H3d_array(
                result_array.len() as _,
                lambda,
                eta,
                result_array.as_mut_ptr(),
            )
        })
    }
}