1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
//
// A rust binding for the GSL library by Guillaume Gomez (guillaume1.gomez@gmail.com)
//

/*!
#Histograms

This chapter describes functions for creating histograms. Histograms provide a convenient way of summarizing the distribution of a set of data. 
A histogram consists of a set of bins which count the number of events falling into a given range of a continuous variable x. In GSL the bins 
of a histogram contain floating-point numbers, so they can be used to record both integer and non-integer distributions. The bins can use arbitrary 
sets of ranges (uniformly spaced bins are the default). Both one and two-dimensional histograms are supported.

Once a histogram has been created it can also be converted into a probability distribution function. The library provides efficient routines 
for selecting random samples from probability distributions. This can be useful for generating simulations based on real data.

##Resampling from histograms

A histogram made by counting events can be regarded as a measurement of a probability distribution. Allowing for statistical error, the height 
of each bin represents the probability of an event where the value of x falls in the range of that bin. The probability distribution function 
has the one-dimensional form p(x)dx where,

p(x) = n_i/ (N w_i)
In this equation n_i is the number of events in the bin which contains x, w_i is the width of the bin and N is the total number of events. 
The distribution of events within each bin is assumed to be uniform.
!*/

use ffi;
use enums;
use std::io::Write;

pub struct Histogram {
    h: *mut ffi::gsl_histogram
}

impl Histogram {
    /// This function allocates memory for a histogram with n bins, and returns a pointer to a newly created gsl_histogram struct. If insufficient
    /// memory is available a null pointer is returned and the error handler is invoked with an error code of Value::NoMem. The bins and ranges are
    /// not initialized, and should be prepared using one of the range-setting functions below in order to make the histogram ready for use.
    pub fn new(n: usize) -> Option<Histogram> {
        let tmp = unsafe { ffi::gsl_histogram_alloc(n) };

        if tmp.is_null() {
            None
        } else {
            Some(Histogram {
                h: tmp
            })
        }
    }

    /// This function sets the ranges of the existing histogram h using the array range of size size. The values of the histogram bins are reset
    /// to zero. The range array should contain the desired bin limits. The ranges can be arbitrary, subject to the restriction that they are
    /// monotonically increasing.
    /// 
    /// The following example shows how to create a histogram with logarithmic bins with ranges [1,10), [10,100) and [100,1000).
    ///
    /// ```C
    /// gsl_histogram * h = gsl_histogram_alloc (3);
    /// 
    /// /* bin[0] covers the range 1 <= x < 10 */
    /// /* bin[1] covers the range 10 <= x < 100 */
    /// /* bin[2] covers the range 100 <= x < 1000 */
    /// 
    /// double range[4] = { 1.0, 10.0, 100.0, 1000.0 };
    /// 
    /// gsl_histogram_set_ranges (h, range, 4);
    /// ```
    /// 
    /// Note that the size of the range array should be defined to be one element bigger than the number of bins. The additional element is
    /// required for the upper value of the final bin.
    pub fn set_ranges(&mut self, range: &[f64]) -> enums::Value {
        enums::Value::from(unsafe { ffi::gsl_histogram_set_ranges(self.h, range.as_ptr(), range.len() as usize) })
    }

    /// This function sets the ranges of the existing histogram h to cover the range xmin to xmax uniformly. The values of the histogram bins
    /// are reset to zero. The bin ranges are shown in the table below,
    /// 
    /// bin[0] corresponds to xmin <= x < xmin + d
    /// bin[1] corresponds to xmin + d <= x < xmin + 2 d
    /// ......
    /// bin[n-1] corresponds to xmin + (n-1)d <= x < xmax
    /// where d is the bin spacing, d = (xmax-xmin)/n.
    pub fn set_ranges_uniform(&mut self, xmin: f64, xmax: f64) -> enums::Value {
        enums::Value::from(unsafe { ffi::gsl_histogram_set_ranges_uniform(self.h, xmin, xmax) })
    }

    /// This function copies the self histogram into the pre-existing histogram dest, making dest into an exact copy of self. The two histograms
    /// must be of the same size.
    pub fn copy(&self, dest: &mut Histogram) -> enums::Value {
        enums::Value::from(unsafe { ffi::gsl_histogram_memcpy(dest.h, self.h) })
    }

    /// This function returns a pointer to a newly created histogram which is an exact copy of the self histogram.
    pub fn clone(&self) -> Option<Histogram> {
        let tmp = unsafe { ffi::gsl_histogram_clone(self.h) };

        if tmp.is_null() {
            None
        } else {
            Some(Histogram {
                h: tmp
            })
        }
    }

    /// This function updates the self histogram by adding one (1.0) to the bin whose range contains the coordinate x.
    /// 
    /// If x lies in the valid range of the histogram then the function returns zero to indicate success. If x is less than the lower limit of
    /// the histogram then the function returns Value::Dom, and none of bins are modified. Similarly, if the value of x is greater than or equal
    /// to the upper limit of the histogram then the function returns Value::Dom, and none of the bins are modified. The error handler is not
    /// called, however, since it is often necessary to compute histograms for a small range of a larger dataset, ignoring the values outside
    /// the range of interest.
    pub fn increment(&mut self, x: f64) -> enums::Value {
        enums::Value::from(unsafe { ffi::gsl_histogram_increment(self.h, x) })
    }

    /// This function is similar to gsl_histogram_increment but increases the value of the appropriate bin in the histogram h by the floating-point
    /// number weight.
    pub fn accumulate(&mut self, x: f64, weight: f64) -> enums::Value {
        enums::Value::from(unsafe { ffi::gsl_histogram_accumulate(self.h, x, weight) })
    }

    /// This function returns the contents of the i-th bin of the histogram h. If i lies outside the valid range of indices for the histogram then
    /// the error handler is called with an error code of Value::Dom and the function returns 0.
    pub fn get(&self, i: usize) -> f64 {
        unsafe { ffi::gsl_histogram_get(self.h, i) }
    }

    /// This function finds the upper and lower range limits of the i-th bin of the self histogram. If the index i is valid then the corresponding
    /// range limits are stored in lower and upper. The lower limit is inclusive (i.e. events with this coordinate are included in the bin) and
    /// the upper limit is exclusive (i.e. events with the coordinate of the upper limit are excluded and fall in the neighboring higher bin,
    /// if it exists). The function returns 0 to indicate success. If i lies outside the valid range of indices for the histogram then
    /// the error handler is called and the function returns an error code of Value::Dom.
    pub fn get_range(&self, i: usize, lower: &mut f64, upper: &mut f64) -> enums::Value {
        enums::Value::from(unsafe { ffi::gsl_histogram_get_range(self.h, i, lower, upper) })
    }

    /// This function returns the maximum upper and minimum lower range limits and the number of bins of the self histogram. They provide a way
    /// of determining these values without accessing the gsl_histogram struct directly.
    pub fn max(&self) -> f64 {
        unsafe { ffi::gsl_histogram_max(self.h) }
    }

    /// This function returns the maximum upper and minimum lower range limits and the number of bins of the self histogram. They provide a way
    /// of determining these values without accessing the gsl_histogram struct directly.
    pub fn min(&self) -> f64 {
        unsafe { ffi::gsl_histogram_min(self.h) }
    }

    /// This function returns the maximum upper and minimum lower range limits and the number of bins of the self histogram. They provide a way
    /// of determining these values without accessing the gsl_histogram struct directly.
    pub fn bins(&self) -> usize {
        unsafe { ffi::gsl_histogram_bins(self.h) }
    }

    /// This function resets all the bins in the self histogram to zero.
    pub fn reset(&mut self) {
        unsafe { ffi::gsl_histogram_reset(self.h) }
    }

    /// This function finds and sets the index i to the bin number which covers the coordinate x in the self histogram. The bin is located using
    /// a binary search. The search includes an optimization for histograms with uniform range, and will return the correct bin immediately in
    /// this case. If x is found in the range of the histogram then the function sets the index i and returns ::Value::Success. If x lies outside
    /// the valid range of the histogram then the function returns Value::Dom and the error handler is invoked.
    pub fn find(&self, x: f64, i: &mut usize) -> enums::Value {
        enums::Value::from(unsafe { ffi::gsl_histogram_find(self.h, x, i) })
    }

    /// This function returns the maximum value contained in the histogram bins.
    pub fn max_val(&self) -> f64 {
        unsafe { ffi::gsl_histogram_max_val(self.h) }
    }

    /// This function returns the index of the bin containing the maximum value. In the case where several bins contain the same maximum value
    /// the smallest index is returned.
    pub fn max_bin(&self) -> usize {
        unsafe { ffi::gsl_histogram_max_bin(self.h) }
    }

    /// This function returns the minimum value contained in the histogram bins.
    pub fn min_val(&self) -> f64 {
        unsafe { ffi::gsl_histogram_min_val(self.h) }
    }

    /// This function returns the index of the bin containing the minimum value. In the case where several bins contain the same maximum value
    /// the smallest index is returned.
    pub fn min_bin(&self) -> usize {
        unsafe { ffi::gsl_histogram_min_bin(self.h) }
    }

    /// This function returns the mean of the histogrammed variable, where the histogram is regarded as a probability distribution. Negative
    /// bin values are ignored for the purposes of this calculation. The accuracy of the result is limited by the bin width.
    pub fn mean(&self) -> f64 {
        unsafe { ffi::gsl_histogram_mean(self.h) }
    }

    /// This function returns the standard deviation of the histogrammed variable, where the histogram is regarded as a probability distribution.
    /// Negative bin values are ignored for the purposes of this calculation. The accuracy of the result is limited by the bin width.
    pub fn sigma(&self) -> f64 {
        unsafe { ffi::gsl_histogram_sigma(self.h) }
    }

    /// This function returns the sum of all bin values. Negative bin values are included in the sum.
    pub fn sum(&self) -> f64 {
        unsafe { ffi::gsl_histogram_sum(self.h) }
    }

    /// This function returns true if the all of the individual bin ranges of the two histograms are identical, and false otherwise.
    pub fn equal_bins_p(&self, other: &Histogram) -> bool {
        match unsafe { ffi::gsl_histogram_equal_bins_p(self.h, other.h) } {
            0i32 => false,
            _ => true
        }
    }

    /// This function adds the contents of the bins in histogram other to the corresponding bins of self histogram, i.e. h'_1(i) = h_1(i) + h_2(i).
    /// The two histograms must have identical bin ranges.
    pub fn add(&mut self, other: &Histogram) -> enums::Value {
        enums::Value::from(unsafe { ffi::gsl_histogram_add(self.h, other.h) })
    }

    /// This function subtracts the contents of the bins in histogram other from the corresponding bins of self histogram, i.e. h'_1(i) = h_1(i) - h_2(i).
    /// The two histograms must have identical bin ranges.
    pub fn sub(&mut self, other: &Histogram) -> enums::Value {
        enums::Value::from(unsafe { ffi::gsl_histogram_sub(self.h, other.h) })
    }

    /// This function multiplies the contents of the bins of self histogram by the contents of the corresponding bins in other histogram, i.e. h'_1(i) =
    /// h_1(i) * h_2(i). The two histograms must have identical bin ranges.
    pub fn mul(&mut self, other: &Histogram) -> enums::Value {
        enums::Value::from(unsafe { ffi::gsl_histogram_mul(self.h, other.h) })
    }

    /// This function divides the contents of the bins of self histogram by the contents of the corresponding bins in other histogram, i.e. h'_1(i) = h_1(i)
    /// / h_2(i). The two histograms must have identical bin ranges.
    pub fn div(&mut self, other: &Histogram) -> enums::Value {
        enums::Value::from(unsafe { ffi::gsl_histogram_div(self.h, other.h) })
    }

    /// This function multiplies the contents of the bins of self histogram by the constant scale, i.e. h'_1(i) = h_1(i) * scale.
    pub fn scale(&mut self, scale: f64) -> enums::Value {
        enums::Value::from(unsafe { ffi::gsl_histogram_scale(self.h, scale) })
    }

    /// This function shifts the contents of the bins of self histogram by the constant offset, i.e. h'_1(i) = h_1(i) + offset.
    pub fn shift(&mut self, offset: f64) -> enums::Value {
        enums::Value::from(unsafe { ffi::gsl_histogram_shift(self.h, offset) })
    }

    #[allow(unused_must_use)]
    pub fn print(&self, stream: &mut Write/*, range_format: &str, bin_format: &str*/) -> enums::Value {
        unsafe {
            let n = (*self.h).n as isize;

            for i in 0isize..n {
                write!(stream, "{}", *(*self.h).range.offset(i));
                write!(stream, " ");
                write!(stream, "{}", *(*self.h).range.offset(i + 1));
                write!(stream, " ");
                write!(stream, "{}", *(*self.h).range.offset(i));
                write!(stream, "\n");
            }

            ::Value::Success
        }
    }
}

impl Drop for Histogram {
    fn drop(&mut self) {
        unsafe { ffi::gsl_histogram_free(self.h) };
        self.h = ::std::ptr::null_mut();
    }
}

impl ffi::FFI<ffi::gsl_histogram> for Histogram {
    fn wrap(h: *mut ffi::gsl_histogram) -> Histogram {
        Histogram {
            h: h
        }
    }

    fn soft_wrap(h: *mut ffi::gsl_histogram) -> Histogram {
        Self::wrap(h)
    }

    fn unwrap_shared(h: &Histogram) -> *const ffi::gsl_histogram {
        h.h as *const _
    }

    fn unwrap_unique(h: &mut Histogram) -> *mut ffi::gsl_histogram {
        h.h
    }
}

/// The probability distribution function for a histogram consists of a set of bins which measure the probability of an event falling into a
/// given range of a continuous variable x. A probability distribution function is defined by the following struct, which actually stores the
/// cumulative probability distribution function. This is the natural quantity for generating samples via the inverse transform method, because
/// there is a one-to-one mapping between the cumulative probability distribution and the range [0,1]. It can be shown that by taking a uniform
/// random number in this range and finding its corresponding coordinate in the cumulative probability distribution we obtain samples with the
/// desired probability distribution.
pub struct HistogramPdf {
    h: *mut ffi::gsl_histogram_pdf
}

impl HistogramPdf {
    /// This function allocates memory for a probability distribution with n bins and returns a pointer to a newly initialized gsl_histogram_pdf
    /// struct. If insufficient memory is available a null pointer is returned and the error handler is invoked with an error code of Value::NoMem.
    pub fn new(n: usize) -> Option<HistogramPdf> {
        let tmp = unsafe { ffi::gsl_histogram_pdf_alloc(n) };

        if tmp.is_null() {
            None
        } else {
            Some(HistogramPdf {
                h: tmp
            })
        }
    }

    /// This function initializes the probability distribution self with the contents of the histogram h. If any of the bins of h are negative then
    /// the error handler is invoked with an error code of Value::Dom because a probability distribution cannot contain negative values.
    pub fn init(&mut self, h: &Histogram) -> enums::Value {
        enums::Value::from(unsafe { ffi::gsl_histogram_pdf_init(self.h, h.h) })
    }

    /// This function uses r, a uniform random number between zero and one, to compute a single random sample from the probability distribution
    /// self. The algorithm used to compute the sample s is given by the following formula,
    /// 
    /// s = range[i] + delta * (range[i+1] - range[i])
    /// 
    /// where i is the index which satisfies sum[i] <= r < sum[i+1] and delta is (r - sum[i])/(sum[i+1] - sum[i]).
    pub fn sample(&self, r: f64) -> f64 {
        unsafe { ffi::gsl_histogram_pdf_sample(self.h, r) }
    }
}

impl Drop for HistogramPdf {
    fn drop(&mut self) {
        unsafe { ffi::gsl_histogram_pdf_free(self.h) };
        self.h = ::std::ptr::null_mut();
    }
}

impl ffi::FFI<ffi::gsl_histogram_pdf> for HistogramPdf {
    fn wrap(h: *mut ffi::gsl_histogram_pdf) -> HistogramPdf {
        HistogramPdf {
            h: h
        }
    }

    fn soft_wrap(h: *mut ffi::gsl_histogram_pdf) -> HistogramPdf {
        Self::wrap(h)
    }

    fn unwrap_shared(h: &HistogramPdf) -> *const ffi::gsl_histogram_pdf {
        h.h as *const _
    }

    fn unwrap_unique(h: &mut HistogramPdf) -> *mut ffi::gsl_histogram_pdf {
        h.h
    }
}

/// A two dimensional histogram consists of a set of bins which count the number of events falling in a given area of the (x,y) plane. The simplest
/// way to use a two dimensional histogram is to record two-dimensional position information, n(x,y). Another possibility is to form a joint
/// distribution by recording related variables. For example a detector might record both the position of an event (x) and the amount of energy
/// it deposited E. These could be histogrammed as the joint distribution n(x,E).
pub struct Histogram2D {
    h: *mut ffi::gsl_histogram2d
}

impl Histogram2D {
    /// This function allocates memory for a two-dimensional histogram with nx bins in the x direction and ny bins in the y direction. The
    /// function returns a pointer to a newly created gsl_histogram2d struct. If insufficient memory is available a null pointer is returned
    /// and the error handler is invoked with an error code of Value::NoMem. The bins and ranges must be initialized with one of the
    /// functions below before the histogram is ready for use.
    pub fn new(nx: usize, ny: usize) -> Option<Histogram2D> {
        let tmp = unsafe { ffi::gsl_histogram2d_alloc(nx, ny) };

        if tmp.is_null() {
            None
        } else {
            Some(Histogram2D {
                h: tmp
            })
        }
    }

    /// This function sets the ranges of the existing histogram h using the arrays xrange and yrange of size xsize and ysize respectively.
    /// The values of the histogram bins are reset to zero.
    pub fn set_ranges(&mut self, xrange: &[f64], yrange: &[f64]) -> enums::Value {
        enums::Value::from(unsafe { ffi::gsl_histogram2d_set_ranges(self.h, xrange.as_ptr(),
                                                                    xrange.len() as _,
                                                                    yrange.as_ptr(),
                                                                    yrange.len() as _) })
    }

    /// This function sets the ranges of the existing histogram h to cover the ranges xmin to xmax and ymin to ymax uniformly. The values
    /// of the histogram bins are reset to zero.
    pub fn set_ranges_uniform(&mut self, xmin: f64, xmax: f64, ymin: f64, ymax: f64) -> enums::Value {
        enums::Value::from(unsafe {
            ffi::gsl_histogram2d_set_ranges_uniform(self.h, xmin, xmax, ymin, ymax)
        })
    }

    /// This function copies the histogram src into the pre-existing histogram dest, making dest into an exact copy of src. The two histograms
    /// must be of the same size.
    pub fn copy(&self, dest: &mut Histogram2D) -> enums::Value {
        enums::Value::from(unsafe { ffi::gsl_histogram2d_memcpy(dest.h, self.h) })
    }

    /// his function returns a pointer to a newly created histogram which is an exact copy of the histogram self.
    pub fn clone(&self) -> Option<Histogram2D> {
        let tmp = unsafe { ffi::gsl_histogram2d_clone(self.h) };

        if tmp.is_null() {
            None
        } else {
            Some(Histogram2D {
                h: tmp
            })
        }
    }

    /// This function updates the histogram h by adding one (1.0) to the bin whose x and y ranges contain the coordinates (x,y).
    /// 
    /// If the point (x,y) lies inside the valid ranges of the histogram then the function returns zero to indicate success. If (x,y) lies
    /// outside the limits of the histogram then the function returns Value::Dom, and none of the bins are modified. The error handler is not
    /// called, since it is often necessary to compute histograms for a small range of a larger dataset, ignoring any coordinates outside the
    /// range of interest.
    pub fn increment(&mut self, x: f64, y: f64) -> enums::Value {
        enums::Value::from(unsafe { ffi::gsl_histogram2d_increment(self.h, x, y) })
    }

    /// This function is similar to gsl_histogram2d_increment but increases the value of the appropriate bin in the histogram h by the floating-point
    /// number weight.
    pub fn accumulate(&mut self, x: f64, y: f64, weight: f64) -> enums::Value {
        enums::Value::from(unsafe { ffi::gsl_histogram2d_accumulate(self.h, x, y, weight) })
    }

    /// This function returns the contents of the (i,j)-th bin of the histogram h. If (i,j) lies outside the valid range of indices for the
    /// histogram then the error handler is called with an error code of Value::Dom and the function returns 0.
    pub fn get(&self, i: usize, j: usize) -> f64 {
        unsafe { ffi::gsl_histogram2d_get(self.h, i, j) }
    }

    /// This function finds the upper and lower range limits of the i-th and j-th bins in the x and y directions of the histogram h. The range
    /// limits are stored in xlower and xupper or ylower and yupper. The lower limits are inclusive (i.e. events with these coordinates are included
    /// in the bin) and the upper limits are exclusive (i.e. events with the value of the upper limit are not included and fall in the neighboring
    /// higher bin, if it exists). The functions return 0 to indicate success. If i or j lies outside the valid range of indices for the histogram
    /// then the error handler is called with an error code of Value::Dom.
    pub fn get_xrange(&self, i: usize, xlower: &mut f64, xupper: &mut f64) -> enums::Value {
        enums::Value::from(unsafe { ffi::gsl_histogram2d_get_xrange(self.h, i, xlower, xupper) })
    }

    /// This function finds the upper and lower range limits of the i-th and j-th bins in the x and y directions of the histogram h. The range
    /// limits are stored in xlower and xupper or ylower and yupper. The lower limits are inclusive (i.e. events with these coordinates are included
    /// in the bin) and the upper limits are exclusive (i.e. events with the value of the upper limit are not included and fall in the neighboring
    /// higher bin, if it exists). The functions return 0 to indicate success. If i or j lies outside the valid range of indices for the histogram
    /// then the error handler is called with an error code of Value::Dom.
    pub fn get_yrange(&self, j: usize, ylower: &mut f64, yupper: &mut f64) -> enums::Value {
        enums::Value::from(unsafe { ffi::gsl_histogram2d_get_yrange(self.h, j, ylower, yupper) })
    }

    /// This function returns the maximum upper and minimum lower range limits and the number of bins for the x and y directions of the histogram h.
    /// They provide a way of determining these values without accessing the gsl_histogram2d struct directly.
    pub fn xmax(&self) -> f64 {
        unsafe { ffi::gsl_histogram2d_xmax(self.h) }
    }

    /// This function returns the maximum upper and minimum lower range limits and the number of bins for the x and y directions of the histogram h.
    /// They provide a way of determining these values without accessing the gsl_histogram2d struct directly.
    pub fn xmin(&self) -> f64 {
        unsafe { ffi::gsl_histogram2d_xmin(self.h) }
    }

    /// This function returns the maximum upper and minimum lower range limits and the number of bins for the x and y directions of the histogram h.
    /// They provide a way of determining these values without accessing the gsl_histogram2d struct directly.
    pub fn nx(&self) -> usize {
        unsafe { ffi::gsl_histogram2d_nx(self.h) }
    }

    /// This function returns the maximum upper and minimum lower range limits and the number of bins for the x and y directions of the histogram h.
    /// They provide a way of determining these values without accessing the gsl_histogram2d struct directly.
    pub fn ymax(&self) -> f64 {
        unsafe { ffi::gsl_histogram2d_ymax(self.h) }
    }

    /// This function returns the maximum upper and minimum lower range limits and the number of bins for the x and y directions of the histogram h.
    /// They provide a way of determining these values without accessing the gsl_histogram2d struct directly.
    pub fn ymin(&self) -> f64 {
        unsafe { ffi::gsl_histogram2d_ymin(self.h) }
    }

    /// This function returns the maximum upper and minimum lower range limits and the number of bins for the x and y directions of the histogram h.
    /// They provide a way of determining these values without accessing the gsl_histogram2d struct directly.
    pub fn ny(&self) -> usize {
        unsafe { ffi::gsl_histogram2d_ny(self.h) }
    }

    /// This function resets all the bins of the histogram h to zero.
    pub fn reset(&mut self) {
        unsafe { ffi::gsl_histogram2d_reset(self.h) }
    }

    /// This function finds and sets the indices i and j to the bin which covers the coordinates (x,y). The bin is located using a binary search.
    /// The search includes an optimization for histograms with uniform ranges, and will return the correct bin immediately in this case. If
    /// (x,y) is found then the function sets the indices (i,j) and returns ::Value::Success. If (x,y) lies outside the valid range of the histogram
    /// then the function returns Value::Dom and the error handler is invoked.
    pub fn find(&self, x: f64, y: f64, i: &mut usize, j: &mut usize) -> enums::Value {
        enums::Value::from(unsafe { ffi::gsl_histogram2d_find(self.h, x, y, i, j) })
    }

    /// This function returns the maximum value contained in the histogram bins.
    pub fn max_val(&self) -> f64 {
        unsafe { ffi::gsl_histogram2d_max_val(self.h) }
    }

    /// This function finds the indices of the bin containing the maximum value in the histogram h and stores the result in (i,j). In the case
    /// where several bins contain the same maximum value the first bin found is returned.
    pub fn max_bin(&self, i: &mut usize, j: &mut usize) {
        unsafe { ffi::gsl_histogram2d_max_bin(self.h, i, j) }
    }

    /// This function returns the minimum value contained in the histogram bins.
    pub fn min_val(&self) -> f64 {
        unsafe { ffi::gsl_histogram2d_min_val(self.h) }
    }

    /// This function finds the indices of the bin containing the minimum value in the histogram h and stores the result in (i,j). In the case
    /// where several bins contain the same maximum value the first bin found is returned.
    pub fn min_bin(&self, i: &mut usize, j: &mut usize) {
        unsafe { ffi::gsl_histogram2d_min_bin(self.h, i, j) }
    }

    /// This function returns the mean of the histogrammed x variable, where the histogram is regarded as a probability distribution. Negative
    /// bin values are ignored for the purposes of this calculation.
    pub fn xmean(&self) -> f64 {
        unsafe { ffi::gsl_histogram2d_xmean(self.h) }
    }

    /// This function returns the mean of the histogrammed y variable, where the histogram is regarded as a probability distribution. Negative
    /// bin values are ignored for the purposes of this calculation.
    pub fn ymean(&self) -> f64 {
        unsafe { ffi::gsl_histogram2d_ymean(self.h) }
    }

    /// This function returns the standard deviation of the histogrammed x variable, where the histogram is regarded as a probability
    /// distribution. Negative bin values are ignored for the purposes of this calculation.
    pub fn xsigma(&self) -> f64 {
        unsafe { ffi::gsl_histogram2d_xsigma(self.h) }
    }

    /// This function returns the standard deviation of the histogrammed y variable, where the histogram is regarded as a probability
    /// distribution. Negative bin values are ignored for the purposes of this calculation.
    pub fn ysigma(&self) -> f64 {
        unsafe { ffi::gsl_histogram2d_ysigma(self.h) }
    }

    /// This function returns the covariance of the histogrammed x and y variables, where the histogram is regarded as a probability
    /// distribution. Negative bin values are ignored for the purposes of this calculation.
    pub fn cov(&self) -> f64 {
        unsafe { ffi::gsl_histogram2d_cov(self.h) }
    }

    /// This function returns the sum of all bin values. Negative bin values are included in the sum.
    pub fn sum(&self) -> f64 {
        unsafe { ffi::gsl_histogram2d_sum(self.h) }
    }

    /// This function returns 1 if all the individual bin ranges of the two histograms are identical, and 0 otherwise.
    pub fn equal_bins_p(&self, other: &Histogram2D) -> bool {
        match unsafe { ffi::gsl_histogram2d_equal_bins_p(self.h, other.h) } {
            0 => false,
            _ => true
        }
    }

    /// This function adds the contents of the bins in histogram h2 to the corresponding bins of histogram h1, i.e. h'_1(i,j) = h_1(i,j)
    /// + h_2(i,j). The two histograms must have identical bin ranges.
    pub fn add(&mut self, other: &Histogram2D) -> enums::Value {
        enums::Value::from(unsafe { ffi::gsl_histogram2d_add(self.h, other.h) })
    }

    /// This function subtracts the contents of the bins in histogram h2 from the corresponding bins of histogram h1, i.e. h'_1(i,j) = h_1(i,j)
    /// - h_2(i,j). The two histograms must have identical bin ranges.
    pub fn sub(&mut self, other: &Histogram2D) -> enums::Value {
        enums::Value::from(unsafe { ffi::gsl_histogram2d_sub(self.h, other.h) })
    }

    /// This function multiplies the contents of the bins of histogram h1 by the contents of the corresponding bins in histogram h2, i.e. h'_1(i,j)
    /// = h_1(i,j) * h_2(i,j). The two histograms must have identical bin ranges.
    pub fn mul(&mut self, other: &Histogram2D) -> enums::Value {
        enums::Value::from(unsafe { ffi::gsl_histogram2d_mul(self.h, other.h) })
    }

    /// This function divides the contents of the bins of histogram h1 by the contents of the corresponding bins in histogram h2, i.e. h'_1(i,j) =
    /// h_1(i,j) / h_2(i,j). The two histograms must have identical bin ranges.
    pub fn div(&mut self, other: &Histogram2D) -> enums::Value {
        enums::Value::from(unsafe { ffi::gsl_histogram2d_div(self.h, other.h) })
    }

    /// This function multiplies the contents of the bins of histogram h by the constant scale, i.e. h'_1(i,j) = h_1(i,j) scale.
    pub fn scale(&mut self, scale: f64) -> enums::Value {
        enums::Value::from(unsafe { ffi::gsl_histogram2d_scale(self.h, scale) })
    }

    /// This function shifts the contents of the bins of histogram h by the constant offset, i.e. h'_1(i,j) = h_1(i,j) + offset.
    pub fn shift(&mut self, offset: f64) -> enums::Value {
        enums::Value::from(unsafe { ffi::gsl_histogram2d_shift(self.h, offset) })
    }
}

impl Drop for Histogram2D {
    fn drop(&mut self) {
        unsafe { ffi::gsl_histogram2d_free(self.h) };
        self.h = ::std::ptr::null_mut();
    }
}

impl ffi::FFI<ffi::gsl_histogram2d> for Histogram2D {
    fn wrap(h: *mut ffi::gsl_histogram2d) -> Histogram2D {
        Histogram2D {
            h: h
        }
    }

    fn soft_wrap(h: *mut ffi::gsl_histogram2d) -> Histogram2D {
        Self::wrap(h)
    }

    fn unwrap_shared(h: &Histogram2D) -> *const ffi::gsl_histogram2d {
        h.h as *const _
    }

    fn unwrap_unique(h: &mut Histogram2D) -> *mut ffi::gsl_histogram2d {
        h.h
    }
}

/// As in the one-dimensional case, a two-dimensional histogram made by counting events can be regarded as a measurement of a probability distribution.
/// Allowing for statistical error, the height of each bin represents the probability of an event where (x,y) falls in the range of that bin. For a
/// two-dimensional histogram the probability distribution takes the form p(x,y) dx dy where,
/// 
/// p(x,y) = n_{ij}/ (N A_{ij})
/// 
/// In this equation n_{ij} is the number of events in the bin which contains (x,y), A_{ij} is the area of the bin and N is the total number of
/// events. The distribution of events within each bin is assumed to be uniform.
pub struct Histogram2DPdf {
    h: *mut ffi::gsl_histogram2d_pdf
}

impl Histogram2DPdf {
    /// This function allocates memory for a two-dimensional probability distribution of size nx-by-ny and returns a pointer to a newly initialized
    /// gsl_histogram2d_pdf struct. If insufficient memory is available a null pointer is returned and the error handler is invoked with an error
    /// code of Value::NoMem.
    pub fn new(nx: usize, ny: usize) -> Option<Histogram2DPdf> {
        let tmp = unsafe { ffi::gsl_histogram2d_pdf_alloc(nx, ny) };

        if tmp.is_null() {
            None
        } else {
            Some(Histogram2DPdf {
                h: tmp
            })
        }
    }

    ///This function initializes the two-dimensional probability distribution calculated p from the histogram h. If any of the bins of h are
    /// negative then the error handler is invoked with an error code of GSL_EDOM because a probability distribution cannot contain negative
    /// values.
    pub fn init(&mut self, h: &Histogram2D) -> enums::Value {
        enums::Value::from(unsafe { ffi::gsl_histogram2d_pdf_init(self.h, h.h) })
    }

    /// This function uses two uniform random numbers between zero and one, r1 and r2, to compute a single random sample from the two-dimensional
    /// probability distribution p.
    pub fn sample(&self, r1: f64, r2: f64, x: &mut f64, y: &mut f64) -> enums::Value {
        enums::Value::from(unsafe { ffi::gsl_histogram2d_pdf_sample(self.h, r1, r2, x, y) })
    }
}

impl Drop for Histogram2DPdf {
    fn drop(&mut self) {
        unsafe { ffi::gsl_histogram2d_pdf_free(self.h) };
        self.h = ::std::ptr::null_mut();
    }
}

impl ffi::FFI<ffi::gsl_histogram2d_pdf> for Histogram2DPdf {
    fn wrap(h: *mut ffi::gsl_histogram2d_pdf) -> Histogram2DPdf {
        Histogram2DPdf {
            h: h
        }
    }

    fn soft_wrap(h: *mut ffi::gsl_histogram2d_pdf) -> Histogram2DPdf {
        Self::wrap(h)
    }

    fn unwrap_shared(h: &Histogram2DPdf) -> *const ffi::gsl_histogram2d_pdf {
        h.h as *const _
    }

    fn unwrap_unique(h: &mut Histogram2DPdf) -> *mut ffi::gsl_histogram2d_pdf {
        h.h
    }
}