1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
//
// A rust binding for the GSL library by Guillaume Gomez (guillaume1.gomez@gmail.com)
//

/*!
#Linear Algebra

This chapter describes functions for solving linear systems. The library provides linear algebra operations which operate directly on the 
gsl_vector and gsl_matrix objects. These routines use the standard algorithms from Golub & Van Loan’s Matrix Computations with Level-1 and 
Level-2 BLAS calls for efficiency.

##LU Decomposition

A general square matrix A has an LU decomposition into upper and lower triangular matrices,

P A = L U
where P is a permutation matrix, L is unit lower triangular matrix and U is upper triangular matrix. For square matrices this decomposition 
can be used to convert the linear system A x = b into a pair of triangular systems (L y = P b, U x = y), which can be solved by forward and 
back-substitution. Note that the LU decomposition is valid for singular matrices.

##QR Decomposition

A general rectangular M-by-N matrix A has a QR decomposition into the product of an orthogonal M-by-M square matrix Q (where Q^T Q = I) and 
an M-by-N right-triangular matrix R,

A = Q R
This decomposition can be used to convert the linear system A x = b into the triangular system R x = Q^T b, which can be solved by back-substitution. 
Another use of the QR decomposition is to compute an orthonormal basis for a set of vectors. The first N columns of Q form an orthonormal 
basis for the range of A, ran(A), when A has full column rank.

##QR Decomposition with Column Pivoting

The QR decomposition can be extended to the rank deficient case by introducing a column permutation P,

A P = Q R
The first r columns of Q form an orthonormal basis for the range of A for a matrix with column rank r. This decomposition can also be used 
to convert the linear system A x = b into the triangular system R y = Q^T b, x = P y, which can be solved by back-substitution and permutation. 
We denote the QR decomposition with column pivoting by QRP^T since A = Q R P^T.

##Singular Value Decomposition

A general rectangular M-by-N matrix A has a singular value decomposition (SVD) into the product of an M-by-N orthogonal matrix U, an N-by-N 
diagonal matrix of singular values S and the transpose of an N-by-N orthogonal square matrix V,

A = U S V^T

The singular values \sigma_i = S_{ii} are all non-negative and are generally chosen to form a non-increasing sequence \sigma_1 >= \sigma_2 >= 
... >= \sigma_N >= 0.

The singular value decomposition of a matrix has many practical uses. The condition number of the matrix is given by the ratio of the largest 
singular value to the smallest singular value. The presence of a zero singular value indicates that the matrix is singular. The number of 
non-zero singular values indicates the rank of the matrix. In practice singular value decomposition of a rank-deficient matrix will not produce 
exact zeroes for singular values, due to finite numerical precision. Small singular values should be edited by choosing a suitable tolerance.

For a rank-deficient matrix, the null space of A is given by the columns of V corresponding to the zero singular values. Similarly, the range 
of A is given by columns of U corresponding to the non-zero singular values.

Note that the routines here compute the “thin” version of the SVD with U as M-by-N orthogonal matrix. This allows in-place computation and is 
the most commonly-used form in practice. Mathematically, the “full” SVD is defined with U as an M-by-M orthogonal matrix and S as an M-by-N 
diagonal matrix (with additional rows of zeros).

##Cholesky Decomposition

A symmetric, positive definite square matrix A has a Cholesky decomposition into a product of a lower triangular matrix L and its transpose L^T,

A = L L^T

This is sometimes referred to as taking the square-root of a matrix. The Cholesky decomposition can only be carried out when all the eigenvalues 
of the matrix are positive. This decomposition can be used to convert the linear system A x = b into a pair of triangular systems (L y = b, 
L^T x = y), which can be solved by forward and back-substitution.

##Tridiagonal Decomposition of Real Symmetric Matrices

A symmetric matrix A can be factorized by similarity transformations into the form,

A = Q T Q^T

where Q is an orthogonal matrix and T is a symmetric tridiagonal matrix.

##Tridiagonal Decomposition of Hermitian Matrices

A hermitian matrix A can be factorized by similarity transformations into the form,

A = U T U^T

where U is a unitary matrix and T is a real symmetric tridiagonal matrix.

##Hessenberg Decomposition of Real Matrices

A general real matrix A can be decomposed by orthogonal similarity transformations into the form

A = U H U^T

where U is orthogonal and H is an upper Hessenberg matrix, meaning that it has zeros below the first subdiagonal. The Hessenberg reduction 
is the first step in the Schur decomposition for the nonsymmetric eigenvalue problem, but has applications in other areas as well.

##Hessenberg-Triangular Decomposition of Real Matrices

A general real matrix pair (A, B) can be decomposed by orthogonal similarity transformations into the form

A = U H V^T
B = U R V^T

where U and V are orthogonal, H is an upper Hessenberg matrix, and R is upper triangular. The Hessenberg-Triangular reduction is the first 
step in the generalized Schur decomposition for the generalized eigenvalue problem.

##Bidiagonalization

A general matrix A can be factorized by similarity transformations into the form,

A = U B V^T
where U and V are orthogonal matrices and B is a N-by-N bidiagonal matrix with non-zero entries only on the diagonal and superdiagonal. The 
size of U is M-by-N and the size of V is N-by-N.

##Householder Transformations

A Householder transformation is a rank-1 modification of the identity matrix which can be used to zero out selected elements of a vector. 
A Householder matrix P takes the form,

P = I - \tau v v^T

where v is a vector (called the Householder vector) and \tau = 2/(v^T v). The functions described in this section use the rank-1 structure 
of the Householder matrix to create and apply Householder transformations efficiently.

##Tridiagonal Systems

The functions described in this section efficiently solve symmetric, non-symmetric and cyclic tridiagonal systems with minimal storage. Note 
that the current implementations of these functions use a variant of Cholesky decomposition, so the tridiagonal matrix must be positive definite. 
For non-positive definite matrices, the functions return the error code ::Sing.

##Balancing

The process of balancing a matrix applies similarity transformations to make the rows and columns have comparable norms. This is useful, for 
example, to reduce roundoff errors in the solution of eigenvalue problems. Balancing a matrix A consists of replacing A with a similar matrix

A' = D^(-1) A D

where D is a diagonal matrix whose entries are powers of the floating point radix.

##14.16 References and Further Reading

Further information on the algorithms described in this section can be found in the following book,

G. H. Golub, C. F. Van Loan, Matrix Computations (3rd Ed, 1996), Johns Hopkins University Press, ISBN 0-8018-5414-8.
The LAPACK library is described in the following manual,

LAPACK Users’ Guide (Third Edition, 1999), Published by SIAM, ISBN 0-89871-447-8.
http://www.netlib.org/lapack

The LAPACK source code can be found at the website above, along with an online copy of the users guide.

The Modified Golub-Reinsch algorithm is described in the following paper,

T.F. Chan, “An Improved Algorithm for Computing the Singular Value Decomposition”, ACM Transactions on Mathematical Software, 8 (1982), pp 72–83.
The Jacobi algorithm for singular value decomposition is described in the following papers,

J.C. Nash, “A one-sided transformation method for the singular value decomposition and algebraic eigenproblem”, Computer Journal, Volume 18, Number 
1 (1975), p 74–76
J.C. Nash and S. Shlien “Simple algorithms for the partial singular value decomposition”, Computer Journal, Volume 30 (1987), p 268–275.
James Demmel, Krešimir Veselić, “Jacobi’s Method is more accurate than QR”, Lapack Working Note 15 (LAWN-15), October 1989. Available from netlib, 
http://www.netlib.org/lapack/ in the lawns or lawnspdf directories.
!*/

use ffi;
use enums;

use types::complex::FFFI;

/// Factorise a general N x N matrix A into,
///
///  P A = L U
///
/// where P is a permutation matrix, L is unit lower triangular and U is upper triangular.
///
/// L is stored in the strict lower triangular part of the input matrix. The diagonal elements of L are unity and are not stored.
///
/// U is stored in the diagonal and upper triangular part of the input matrix.
///
/// P is stored in the permutation p. Column j of P is column k of the identity matrix, where k = permutation->data[j]
///
/// signum gives the sign of the permutation, (-1)^n, where n is the  number of interchanges in the permutation.
///
/// See Golub & Van Loan, Matrix Computations, Algorithm 3.4.1 (Gauss Elimination with Partial Pivoting).
pub fn LU_decomp(a: &mut ::MatrixF64, p: &mut ::Permutation, signum: &mut i32) -> enums::Value {
    enums::Value::from(unsafe {
        ffi::gsl_linalg_LU_decomp(ffi::FFI::unwrap_unique(a),
                                  ffi::FFI::unwrap_unique(p),
                                  signum)
    })
}

/// Factorise a general N x N complex matrix A into,
///
///   P A = L U
///
/// where P is a permutation matrix, L is unit lower triangular and U is upper triangular.
///
/// L is stored in the strict lower triangular part of the input matrix. The diagonal elements of L are unity and are not stored.
///
/// U is stored in the diagonal and upper triangular part of the input matrix.
///
/// P is stored in the permutation p. Column j of P is column k of the identity matrix, where k = permutation->data[j]
///
/// signum gives the sign of the permutation, (-1)^n, where n is the number of interchanges in the permutation.
///
/// See Golub & Van Loan, Matrix Computations, Algorithm 3.4.1 (Gauss Elimination with Partial Pivoting).
pub fn complex_LU_decomp(
    a: &mut ::MatrixComplexF64,
    p: &mut ::Permutation,
    signum: &mut i32,
) -> enums::Value {
    enums::Value::from(unsafe {
        ffi::gsl_linalg_complex_LU_decomp(ffi::FFI::unwrap_unique(a),
                                          ffi::FFI::unwrap_unique(p),
                                          signum)
    })
}

/// This function solves the square system A x = b using the LU decomposition of A into (LU, p) given by LU_decomp or LU_decomp as input.
pub fn LU_solve(
    lu: &::MatrixF64,
    p: &::Permutation,
    b: &::VectorF64,
    x: &mut ::VectorF64,
) -> enums::Value {
    enums::Value::from(unsafe {
        ffi::gsl_linalg_LU_solve(ffi::FFI::unwrap_shared(lu),
                                 ffi::FFI::unwrap_shared(p),
                                 ffi::FFI::unwrap_shared(b),
                                 ffi::FFI::unwrap_unique(x))
    })
}

/// This function solves the square system A x = b using the LU decomposition of A into (LU, p) given by LU_decomp or LU_decomp as input.
pub fn complex_LU_solve(
    lu: &::MatrixComplexF64,
    p: &::Permutation,
    b: &::VectorComplexF64,
    x: &mut ::VectorComplexF64,
) -> enums::Value {
    enums::Value::from(unsafe {
        ffi::gsl_linalg_complex_LU_solve(ffi::FFI::unwrap_shared(lu),
                                         ffi::FFI::unwrap_shared(p),
                                         ffi::FFI::unwrap_shared(b),
                                         ffi::FFI::unwrap_unique(x))
    })
}

/// This function solves the square system A x = b in-place using the precomputed LU decomposition of A into (LU,p). On input x should contain
/// the right-hand side b, which is replaced by the solution on output.
pub fn LU_svx(lu: &::MatrixF64, p: &::Permutation, x: &mut ::VectorF64) -> enums::Value {
    enums::Value::from(unsafe {
        ffi::gsl_linalg_LU_svx(ffi::FFI::unwrap_shared(lu),
                               ffi::FFI::unwrap_shared(p),
                               ffi::FFI::unwrap_unique(x))
    })
}

/// This function solves the square system A x = b in-place using the precomputed LU decomposition of A into (LU,p). On input x should contain
/// the right-hand side b, which is replaced by the solution on output.
pub fn complex_LU_svx(lu: &::MatrixComplexF64,
                      p: &::Permutation,
                      x: &mut ::VectorComplexF64)
                      -> enums::Value {
    enums::Value::from(unsafe {
        ffi::gsl_linalg_complex_LU_svx(ffi::FFI::unwrap_shared(lu),
                                       ffi::FFI::unwrap_shared(p),
                                       ffi::FFI::unwrap_unique(x))
    })
}

/// This function applies an iterative improvement to x, the solution of A x = b, from the precomputed LU decomposition of A into (LU,p). The
/// initial residual r = A x - b is also computed and stored in residual.
pub fn LU_refine(a: &::MatrixF64,
                 lu: &::MatrixF64,
                 p: &::Permutation,
                 b: &::VectorF64,
                 x: &mut ::VectorF64,
                 residual: &mut ::VectorF64)
                 -> enums::Value {
    enums::Value::from(unsafe {
        ffi::gsl_linalg_LU_refine(ffi::FFI::unwrap_shared(a),
                                  ffi::FFI::unwrap_shared(lu),
                                  ffi::FFI::unwrap_shared(p),
                                  ffi::FFI::unwrap_shared(b),
                                  ffi::FFI::unwrap_unique(x),
                                  ffi::FFI::unwrap_unique(residual))
    })
}

/// This function applies an iterative improvement to x, the solution of A x = b, from the precomputed LU decomposition of A into (LU,p). The
/// initial residual r = A x - b is also computed and stored in residual.
pub fn complex_LU_refine(a: &mut ::MatrixComplexF64,
                         lu: &::MatrixComplexF64,
                         p: &::Permutation,
                         b: &::VectorComplexF64,
                         x: &mut ::VectorComplexF64,
                         residual: &mut ::VectorComplexF64)
                         -> enums::Value {
    enums::Value::from(unsafe {
        ffi::gsl_linalg_complex_LU_refine(ffi::FFI::unwrap_unique(a),
                                          ffi::FFI::unwrap_shared(lu),
                                          ffi::FFI::unwrap_shared(p),
                                          ffi::FFI::unwrap_shared(b),
                                          ffi::FFI::unwrap_unique(x),
                                          ffi::FFI::unwrap_unique(residual))
    })
}

/// This function computes the inverse of a matrix A from its LU decomposition (LU,p), storing the result in the matrix inverse. The inverse
/// is computed by solving the system A x = b for each column of the identity matrix. It is preferable to avoid direct use of the inverse
/// whenever possible, as the linear solver functions can obtain the same result more efficiently and reliably (consult any introductory
/// textbook on numerical linear algebra for details).
pub fn LU_invert(lu: &::MatrixF64, p: &::Permutation, inverse: &mut ::MatrixF64) -> enums::Value {
    enums::Value::from(unsafe {
        ffi::gsl_linalg_LU_invert(ffi::FFI::unwrap_shared(lu),
                                  ffi::FFI::unwrap_shared(p),
                                  ffi::FFI::unwrap_unique(inverse))
    })
}

/// This function computes the inverse of a matrix A from its LU decomposition (LU,p), storing the result in the matrix inverse. The inverse
/// is computed by solving the system A x = b for each column of the identity matrix. It is preferable to avoid direct use of the inverse
/// whenever possible, as the linear solver functions can obtain the same result more efficiently and reliably (consult any introductory
/// textbook on numerical linear algebra for details).
pub fn complex_LU_invert(
    lu: &::MatrixComplexF64,
    p: &::Permutation,
    inverse: &mut ::MatrixComplexF64,
) -> enums::Value {
    enums::Value::from(unsafe {
        ffi::gsl_linalg_complex_LU_invert(ffi::FFI::unwrap_shared(lu),
                                          ffi::FFI::unwrap_shared(p),
                                          ffi::FFI::unwrap_unique(inverse))
    })
}

/// This function computes the determinant of a matrix A from its LU decomposition, LU. The determinant is computed as the product of the
/// diagonal elements of U and the sign of the row permutation signum.
pub fn LU_det(lu: &mut ::MatrixF64, signum: i32) -> f64 {
    unsafe { ffi::gsl_linalg_LU_det(ffi::FFI::unwrap_unique(lu), signum) }
}

/// This function computes the determinant of a matrix A from its LU decomposition, LU. The determinant is computed as the product of the
/// diagonal elements of U and the sign of the row permutation signum.
pub fn complex_LU_det(lu: &mut ::MatrixComplexF64, signum: i32) -> ::ComplexF64 {
    unsafe { ffi::gsl_linalg_complex_LU_det(ffi::FFI::unwrap_unique(lu), signum).wrap() }
}

/// These functions compute the logarithm of the absolute value of the determinant of a matrix A, \ln|\det(A)|, from its LU decomposition,
/// LU. This function may be useful if the direct computation of the determinant would overflow or underflow.
pub fn LU_lndet(lu: &mut ::MatrixF64) -> f64 {
    unsafe { ffi::gsl_linalg_LU_lndet(ffi::FFI::unwrap_unique(lu)) }
}

/// These functions compute the logarithm of the absolute value of the determinant of a matrix A, \ln|\det(A)|, from its LU decomposition,
/// LU. This function may be useful if the direct computation of the determinant would overflow or underflow.
pub fn complex_LU_lndet(lu: &mut ::MatrixComplexF64) -> f64 {
    unsafe { ffi::gsl_linalg_complex_LU_lndet(ffi::FFI::unwrap_unique(lu)) }
}

/// This function computes the sign or phase factor of the determinant of a matrix A, \det(A)/|\det(A)|, from its LU decomposition, LU.
pub fn LU_sgndet(lu: &mut ::MatrixF64, signum: i32) -> f64 {
    unsafe { ffi::gsl_linalg_LU_sgndet(ffi::FFI::unwrap_unique(lu), signum) }
}

/// This function computes the sign or phase factor of the determinant of a matrix A, \det(A)/|\det(A)|, from its LU decomposition, LU.
pub fn complex_LU_sgndet(lu: &mut ::MatrixComplexF64, signum: i32) -> ::ComplexF64 {
    unsafe { ffi::gsl_linalg_complex_LU_sgndet(ffi::FFI::unwrap_unique(lu), signum).wrap() }
}

/// This function factorizes the M-by-N matrix A into the QR decomposition A = Q R. On output the diagonal and upper triangular part of the
/// input matrix contain the matrix R. The vector tau and the columns of the lower triangular part of the matrix A contain the Householder
/// coefficients and Householder vectors which encode the orthogonal matrix Q. The vector tau must be of length k=\min(M,N). The matrix Q
/// is related to these components by, Q = Q_k ... Q_2 Q_1 where Q_i = I - \tau_i v_i v_i^T and v_i is the Householder vector v_i =
/// (0,...,1,A(i+1,i),A(i+2,i),...,A(m,i)). This is the same storage scheme as used by LAPACK.
///
/// The algorithm used to perform the decomposition is Householder QR (Golub & Van Loan, Matrix Computations, Algorithm 5.2.1).
pub fn QR_decomp(a: &mut ::MatrixF64, tau: &mut ::VectorF64) -> enums::Value {
    enums::Value::from(unsafe {
        ffi::gsl_linalg_QR_decomp(ffi::FFI::unwrap_unique(a), ffi::FFI::unwrap_unique(tau))
    })
}

/// This function solves the square system A x = b using the QR decomposition of A held in (QR, tau) which must have been computed previously
/// with gsl_linalg_QR_decomp. The least-squares solution for rectangular systems can be found using QR_lssolve.
pub fn QR_solve(
    qr: &::MatrixF64,
    tau: &::VectorF64,
    b: &::VectorF64,
    x: &mut ::VectorF64,
) -> enums::Value {
    enums::Value::from(unsafe {
        ffi::gsl_linalg_QR_solve(ffi::FFI::unwrap_shared(qr),
                                 ffi::FFI::unwrap_shared(tau),
                                 ffi::FFI::unwrap_shared(b),
                                 ffi::FFI::unwrap_unique(x))
    })
}

/// This function solves the square system A x = b in-place using the QR decomposition of A held in (QR,tau) which must have been computed
/// previously by gsl_linalg_QR_decomp. On input x should contain the right-hand side b, which is replaced by the solution on output.
pub fn QR_svx(qr: &::MatrixF64, tau: &::VectorF64, x: &mut ::VectorF64) -> enums::Value {
    enums::Value::from(unsafe {
        ffi::gsl_linalg_QR_svx(ffi::FFI::unwrap_shared(qr),
                               ffi::FFI::unwrap_shared(tau),
                               ffi::FFI::unwrap_unique(x))
    })
}

/// This function finds the least squares solution to the overdetermined system A x = b where the matrix A has more rows than columns. The
/// least squares solution minimizes the Euclidean norm of the residual, ||Ax - b||.The routine requires as input the QR decomposition of
/// A into (QR, tau) given by gsl_linalg_QR_decomp. The solution is returned in x. The residual is computed as a by-product and stored in
/// residual.
pub fn QR_lssolve(qr: &::MatrixF64,
                  tau: &::VectorF64,
                  b: &::VectorF64,
                  x: &mut ::VectorF64,
                  residual: &mut ::VectorF64)
                  -> enums::Value {
    enums::Value::from(unsafe {
        ffi::gsl_linalg_QR_lssolve(ffi::FFI::unwrap_shared(qr),
                                   ffi::FFI::unwrap_shared(tau),
                                   ffi::FFI::unwrap_shared(b),
                                   ffi::FFI::unwrap_unique(x),
                                   ffi::FFI::unwrap_unique(residual))
    })
}

/// This function applies the matrix Q^T encoded in the decomposition (QR,tau) to the vector v, storing the result Q^T v in v. The matrix
/// multiplication is carried out directly using the encoding of the Householder vectors without needing to form the full matrix Q^T.
pub fn QR_QTvec(qr: &::MatrixF64, tau: &::VectorF64, v: &mut ::VectorF64) -> enums::Value {
    enums::Value::from(unsafe {
        ffi::gsl_linalg_QR_QTvec(ffi::FFI::unwrap_shared(qr),
                                 ffi::FFI::unwrap_shared(tau),
                                 ffi::FFI::unwrap_unique(v))
    })
}

/// This function applies the matrix Q encoded in the decomposition (QR,tau) to the vector v, storing the result Q v in v. The matrix
/// multiplication is carried out directly using the encoding of the Householder vectors without needing to form the full matrix Q.
pub fn QR_Qvec(qr: &::MatrixF64, tau: &::VectorF64, v: &mut ::VectorF64) -> enums::Value {
    enums::Value::from(unsafe {
        ffi::gsl_linalg_QR_Qvec(ffi::FFI::unwrap_shared(qr),
                                ffi::FFI::unwrap_shared(tau),
                                ffi::FFI::unwrap_unique(v))
    })
}

/// This function applies the matrix Q^T encoded in the decomposition (QR,tau) to the matrix A, storing the result Q^T A in A. The matrix
/// multiplication is carried out directly using the encoding of the Householder vectors without needing to form the full matrix Q^T.
pub fn QR_QTmat(qr: &::MatrixF64, tau: &::VectorF64, v: &mut ::MatrixF64) -> enums::Value {
    enums::Value::from(unsafe {
        ffi::gsl_linalg_QR_QTmat(ffi::FFI::unwrap_shared(qr),
                                 ffi::FFI::unwrap_shared(tau),
                                 ffi::FFI::unwrap_unique(v))
    })
}

/// This function solves the triangular system R x = b for x. It may be useful if the product b' = Q^T b has already been computed using
/// gsl_linalg_QR_QTvec.
pub fn QR_Rsolve(qr: &::MatrixF64, b: &::VectorF64, x: &mut ::VectorF64) -> enums::Value {
    enums::Value::from(unsafe {
        ffi::gsl_linalg_QR_Rsolve(ffi::FFI::unwrap_shared(qr),
                                  ffi::FFI::unwrap_shared(b),
                                  ffi::FFI::unwrap_unique(x))
    })
}

/// This function solves the triangular system R x = b for x in-place. On input x should contain the right-hand side b and is replaced by
/// the solution on output. This function may be useful if the product b' = Q^T b has already been computed using gsl_linalg_QR_QTvec.
pub fn QR_Rsvx(qr: &::MatrixF64, x: &mut ::VectorF64) -> enums::Value {
    enums::Value::from(unsafe {
        ffi::gsl_linalg_QR_Rsvx(ffi::FFI::unwrap_shared(qr), ffi::FFI::unwrap_unique(x))
    })
}

/// This function unpacks the encoded QR decomposition (QR,tau) into the matrices Q and R, where Q is M-by-M and R is M-by-N.
pub fn QR_unpack(
    qr: &::MatrixF64,
    tau: &::VectorF64,
    q: &mut ::MatrixF64,
    r: &mut ::MatrixF64,
) -> enums::Value {
    enums::Value::from(unsafe {
        ffi::gsl_linalg_QR_unpack(ffi::FFI::unwrap_shared(qr),
                                  ffi::FFI::unwrap_shared(tau),
                                  ffi::FFI::unwrap_unique(q),
                                  ffi::FFI::unwrap_unique(r))
    })
}

/// This function solves the system R x = Q^T b for x. It can be used when the QR decomposition of a matrix is available in unpacked
/// form as (Q, R).
pub fn QR_QRsolve(
    q: &mut ::MatrixF64,
    r: &mut ::MatrixF64,
    b: &::VectorF64,
    x: &mut ::VectorF64,
) -> enums::Value {
    enums::Value::from(unsafe {
        ffi::gsl_linalg_QR_QRsolve(ffi::FFI::unwrap_unique(q),
                                   ffi::FFI::unwrap_unique(r),
                                   ffi::FFI::unwrap_shared(b),
                                   ffi::FFI::unwrap_unique(x))
    })
}

/// This function performs a rank-1 update w v^T of the QR decomposition (Q, R). The update is given by Q'R' = Q (R + w v^T) where the
/// output matrices Q' and R' are also orthogonal and right triangular. Note that w is destroyed by the update.
pub fn QR_update(
    q: &mut ::MatrixF64,
    r: &mut ::MatrixF64,
    mut w: ::VectorF64,
    v: &::VectorF64,
) -> enums::Value {
    enums::Value::from(unsafe {
        ffi::gsl_linalg_QR_update(ffi::FFI::unwrap_unique(q),
                                  ffi::FFI::unwrap_unique(r),
                                  ffi::FFI::unwrap_unique(&mut w),
                                  ffi::FFI::unwrap_shared(v))
    })
}

/// This function solves the triangular system R x = b for the N-by-N matrix R.
pub fn R_solve(r: &::MatrixF64, b: &::VectorF64, x: &mut ::VectorF64) -> enums::Value {
    enums::Value::from(unsafe {
        ffi::gsl_linalg_R_solve(ffi::FFI::unwrap_shared(r),
                                ffi::FFI::unwrap_shared(b),
                                ffi::FFI::unwrap_unique(x))
    })
}

/// This function solves the triangular system R x = b in-place. On input x should contain the right-hand side b, which is replaced by
/// the solution on output.
pub fn R_svx(r: &::MatrixF64, x: &mut ::VectorF64) -> enums::Value {
    enums::Value::from(unsafe {
        ffi::gsl_linalg_R_svx(ffi::FFI::unwrap_shared(r), ffi::FFI::unwrap_unique(x))
    })
}

/// This function factorizes the M-by-N matrix A into the QRP^T decomposition A = Q R P^T. On output the diagonal and upper triangular part
/// of the input matrix contain the matrix R. The permutation matrix P is stored in the permutation p. The sign of the permutation is given
/// by signum. It has the value (-1)^n, where n is the number of interchanges in the permutation. The vector tau and the columns of the lower
/// triangular part of the matrix A contain the Householder coefficients and vectors which encode the orthogonal matrix Q. The vector tau must
/// be of length k=\min(M,N). The matrix Q is related to these components by, Q = Q_k ... Q_2 Q_1 where Q_i = I - \tau_i v_i v_i^T and v_i is
/// the Householder vector v_i = (0,...,1,A(i+1,i),A(i+2,i),...,A(m,i)). This is the same storage scheme as used by LAPACK. The vector norm is
/// a workspace of length N used for column pivoting.
///
/// The algorithm used to perform the decomposition is Householder QR with column pivoting (Golub & Van Loan, Matrix Computations, Algorithm 5.4.1).
pub fn QRPT_decomp(
    a: &mut ::MatrixF64,
    tau: &mut ::VectorF64,
    p: &mut ::Permutation,
    signum: &mut i32,
    norm: &mut ::VectorF64,
) -> enums::Value {
    enums::Value::from(unsafe {
        ffi::gsl_linalg_QRPT_decomp(ffi::FFI::unwrap_unique(a),
                                    ffi::FFI::unwrap_unique(tau),
                                    ffi::FFI::unwrap_unique(p),
                                    signum,
                                    ffi::FFI::unwrap_unique(norm))
    })
}

/// This function factorizes the matrix A into the decomposition A = Q R P^T without modifying A itself and storing the output in the separate
/// matrices q and r.
pub fn QRPT_decomp2(
    a: &::MatrixF64,
    q: &mut ::MatrixF64,
    r: &mut ::MatrixF64,
    tau: &mut ::VectorF64,
    p: &mut ::Permutation,
    signum: &mut i32,
    norm: &mut ::VectorF64,
) -> enums::Value {
    enums::Value::from(unsafe {
        ffi::gsl_linalg_QRPT_decomp2(ffi::FFI::unwrap_shared(a),
                                     ffi::FFI::unwrap_unique(q),
                                     ffi::FFI::unwrap_unique(r),
                                     ffi::FFI::unwrap_unique(tau),
                                     ffi::FFI::unwrap_unique(p),
                                     signum,
                                     ffi::FFI::unwrap_unique(norm))
    })
}

/// This function solves the square system A x = b using the QRP^T decomposition of A held in (QR, tau, p) which must have been computed previously
/// by QRPT_decomp.
pub fn QRPT_solve(
    qr: &::MatrixF64,
    tau: &::VectorF64,
    p: &::Permutation,
    b: &::VectorF64,
    x: &mut ::VectorF64,
) -> enums::Value {
    enums::Value::from(unsafe {
        ffi::gsl_linalg_QRPT_solve(ffi::FFI::unwrap_shared(qr),
                                   ffi::FFI::unwrap_shared(tau),
                                   ffi::FFI::unwrap_shared(p),
                                   ffi::FFI::unwrap_shared(b),
                                   ffi::FFI::unwrap_unique(x))
    })
}

/// This function solves the square system A x = b in-place using the QRP^T decomposition of A held in (QR,tau,p). On input x should contain the
/// right-hand side b, which is replaced by the solution on output.
pub fn QRPT_svx(
    qr: &::MatrixF64,
    tau: &::VectorF64,
    p: &::Permutation,
    x: &mut ::VectorF64,
) -> enums::Value {
    enums::Value::from(unsafe {
        ffi::gsl_linalg_QRPT_svx(ffi::FFI::unwrap_shared(qr),
                                 ffi::FFI::unwrap_shared(tau),
                                 ffi::FFI::unwrap_shared(p),
                                 ffi::FFI::unwrap_unique(x))
    })
}

/// This function solves the square system R P^T x = Q^T b for x. It can be used when the QR decomposition of a matrix is available in unpacked
/// form as (Q, R).
pub fn QRPT_QRsolve(
    q: &::MatrixF64,
    r: &::MatrixF64,
    p: &::Permutation,
    b: &::VectorF64,
    x: &mut ::VectorF64,
) -> enums::Value {
    enums::Value::from(unsafe {
        ffi::gsl_linalg_QRPT_QRsolve(ffi::FFI::unwrap_shared(q),
                                     ffi::FFI::unwrap_shared(r),
                                     ffi::FFI::unwrap_shared(p),
                                     ffi::FFI::unwrap_shared(b),
                                     ffi::FFI::unwrap_unique(x))
    })
}

/// This function performs a rank-1 update w v^T of the QRP^T decomposition (Q, R, p). The update is given by Q'R' = Q (R + w v^T P) where the
/// output matrices Q' and R' are also orthogonal and right triangular. Note that w is destroyed by the update. The permutation p is not changed.
pub fn QRPT_update(
    q: &::MatrixF64,
    r: &::MatrixF64,
    p: &::Permutation,
    w: &mut ::VectorF64,
    v: &::VectorF64,
) -> enums::Value {
    enums::Value::from(unsafe {
        ffi::gsl_linalg_QRPT_update(ffi::FFI::unwrap_shared(q),
                                    ffi::FFI::unwrap_shared(r),
                                    ffi::FFI::unwrap_shared(p),
                                    ffi::FFI::unwrap_unique(w),
                                    ffi::FFI::unwrap_shared(v))
    })
}

/// This function solves the triangular system R P^T x = b for the N-by-N matrix R contained in QR.
pub fn QRPT_Rsolve(
    qr: &::MatrixF64,
    p: &::Permutation,
    b: &::VectorF64,
    x: &mut ::VectorF64,
) -> enums::Value {
    enums::Value::from(unsafe {
        ffi::gsl_linalg_QRPT_Rsolve(ffi::FFI::unwrap_shared(qr),
                                    ffi::FFI::unwrap_shared(p),
                                    ffi::FFI::unwrap_shared(b),
                                    ffi::FFI::unwrap_unique(x))
    })
}

/// This function solves the triangular system R P^T x = b in-place for the N-by-N matrix R contained in QR. On input x should contain the
/// right-hand side b, which is replaced by the solution on output.
pub fn QRPT_Rsvx(qr: &::MatrixF64, p: &::Permutation, x: &mut ::VectorF64) -> enums::Value {
    enums::Value::from(unsafe {
        ffi::gsl_linalg_QRPT_Rsvx(ffi::FFI::unwrap_shared(qr),
                                  ffi::FFI::unwrap_shared(p),
                                  ffi::FFI::unwrap_unique(x))
    })
}

/// This function factorizes the M-by-N matrix A into the singular value decomposition A = U S V^T for M >= N. On output the matrix A is replaced
/// by U. The diagonal elements of the singular value matrix S are stored in the vector S. The singular values are non-negative and form a
/// non-increasing sequence from S_1 to S_N. The matrix V contains the elements of V in untransposed form. To form the product U S V^T it is
/// necessary to take the transpose of V. A workspace of length N is required in work.
///
/// This routine uses the Golub-Reinsch SVD algorithm.
pub fn SV_decomp(
    a: &mut ::MatrixF64,
    v: &mut ::MatrixF64,
    s: &mut ::VectorF64,
    work: &mut ::VectorF64,
) -> enums::Value {
    enums::Value::from(unsafe {
        ffi::gsl_linalg_SV_decomp(ffi::FFI::unwrap_unique(a),
                                  ffi::FFI::unwrap_unique(v),
                                  ffi::FFI::unwrap_unique(s),
                                  ffi::FFI::unwrap_unique(work))
    })
}

/// This function computes the SVD using the modified Golub-Reinsch algorithm, which is faster for M>>N. It requires the vector work of length
/// N and the N-by-N matrix X as additional working space.
pub fn SV_decomp_mod(
    a: &mut ::MatrixF64,
    x: &mut ::MatrixF64,
    v: &mut ::MatrixF64,
    s: &mut ::VectorF64,
    work: &mut ::VectorF64,
) -> enums::Value {
    enums::Value::from(unsafe {
        ffi::gsl_linalg_SV_decomp_mod(ffi::FFI::unwrap_unique(a),
                                      ffi::FFI::unwrap_unique(x),
                                      ffi::FFI::unwrap_unique(v),
                                      ffi::FFI::unwrap_unique(s),
                                      ffi::FFI::unwrap_unique(work))
    })
}

/// This function computes the SVD of the M-by-N matrix A using one-sided Jacobi orthogonalization for M >= N. The Jacobi method can compute
/// singular values to higher relative accuracy than Golub-Reinsch algorithms (see references for details).
pub fn SV_decomp_jacobi(a: &mut ::MatrixF64, v: &mut ::MatrixF64, s: &mut ::VectorF64) -> enums::Value {
    enums::Value::from(unsafe {
        ffi::gsl_linalg_SV_decomp_jacobi(ffi::FFI::unwrap_unique(a),
                                         ffi::FFI::unwrap_unique(v),
                                         ffi::FFI::unwrap_unique(s))
    })
}

/// This function solves the system A x = b using the singular value decomposition (U, S, V) of A which must have been computed previously
/// with gsl_linalg_SV_decomp.
///
/// Only non-zero singular values are used in computing the solution. The parts of the solution corresponding to singular values of zero are
/// ignored. Other singular values can be edited out by setting them to zero before calling this function.
///
/// In the over-determined case where A has more rows than columns the system is solved in the least squares sense, returning the solution
/// x which minimizes ||A x - b||_2.
pub fn SV_solve(
    u: &::MatrixF64,
    v: &::MatrixF64,
    s: &::VectorF64,
    b: &::VectorF64,
    x: &mut ::VectorF64,
) -> enums::Value {
    enums::Value::from(unsafe {
        ffi::gsl_linalg_SV_solve(ffi::FFI::unwrap_shared(u),
                                 ffi::FFI::unwrap_shared(v),
                                 ffi::FFI::unwrap_shared(s),
                                 ffi::FFI::unwrap_shared(b),
                                 ffi::FFI::unwrap_unique(x))
    })
}

/// This function computes the statistical leverage values h_i of a matrix A using its singular value decomposition (U, S, V) previously computed
/// with gsl_linalg_SV_decomp. h_i are the diagonal values of the matrix A (A^T A)^{-1} A^T and depend only on the matrix U which is the input to
/// this function.
pub fn SV_leverage(u: &::MatrixF64, h: &mut ::VectorF64) -> enums::Value {
    enums::Value::from(unsafe {
        ffi::gsl_linalg_SV_leverage(ffi::FFI::unwrap_shared(u), ffi::FFI::unwrap_unique(h))
    })
}

/// This function factorizes the symmetric, positive-definite square matrix A into the Cholesky decomposition A = L L^T (or A = L L^H for
/// the complex case). On input, the values from the diagonal and lower-triangular part of the matrix A are used (the upper triangular part
/// is ignored). On output the diagonal and lower triangular part of the input matrix A contain the matrix L, while the upper triangular part
/// of the input matrix is overwritten with L^T (the diagonal terms being identical for both L and L^T). If the matrix is not positive-definite
/// then the decomposition will fail, returning the error code ::Dom.
///
/// When testing whether a matrix is positive-definite, disable the error handler first to avoid triggering an error.
pub fn cholesky_decomp(a: &mut ::MatrixF64) -> enums::Value {
    enums::Value::from(unsafe { ffi::gsl_linalg_cholesky_decomp(ffi::FFI::unwrap_unique(a)) })
}

/// This function factorizes the symmetric, positive-definite square matrix A into the Cholesky decomposition A = L L^T (or A = L L^H for
/// the complex case). On input, the values from the diagonal and lower-triangular part of the matrix A are used (the upper triangular part
/// is ignored). On output the diagonal and lower triangular part of the input matrix A contain the matrix L, while the upper triangular part
/// of the input matrix is overwritten with L^T (the diagonal terms being identical for both L and L^T). If the matrix is not positive-definite
/// then the decomposition will fail, returning the error code ::Dom.
///
/// When testing whether a matrix is positive-definite, disable the error handler first to avoid triggering an error.
pub fn complex_cholesky_decomp(a: &mut ::MatrixComplexF64) -> enums::Value {
    enums::Value::from(unsafe {
        ffi::gsl_linalg_complex_cholesky_decomp(ffi::FFI::unwrap_unique(a))
    })
}

/// This function solves the system A x = b using the Cholesky decomposition of A held in the matrix cholesky which must have been previously
/// computed by gsl_linalg_cholesky_decomp or gsl_linalg_complex_cholesky_decomp.
pub fn cholesky_solve(
    cholesky: &::MatrixF64,
    b: &::VectorF64,
    x: &mut ::VectorF64,
) -> enums::Value {
    enums::Value::from(unsafe {
        ffi::gsl_linalg_cholesky_solve(ffi::FFI::unwrap_shared(cholesky),
                                       ffi::FFI::unwrap_shared(b),
                                       ffi::FFI::unwrap_unique(x))
    })
}

/// This function solves the system A x = b using the Cholesky decomposition of A held in the matrix cholesky which must have been previously
/// computed by gsl_linalg_cholesky_decomp or gsl_linalg_complex_cholesky_decomp.
pub fn complex_cholesky_solve(
    cholesky: &::MatrixComplexF64,
    b: &::VectorComplexF64,
    x: &mut ::VectorComplexF64,
) -> enums::Value {
    enums::Value::from(unsafe {
        ffi::gsl_linalg_complex_cholesky_solve(ffi::FFI::unwrap_shared(cholesky),
                                               ffi::FFI::unwrap_shared(b),
                                               ffi::FFI::unwrap_unique(x))
    })
}

/// This function solves the system A x = b in-place using the Cholesky decomposition of A held in the matrix cholesky which must have been
/// previously computed by gsl_linalg_cholesky_decomp or gsl_linalg_complex_cholesky_decomp. On input x should contain the right-hand side
/// b, which is replaced by the solution on output.
pub fn cholesky_svx(cholesky: &::MatrixF64, x: &mut ::VectorF64) -> enums::Value {
    enums::Value::from(unsafe {
        ffi::gsl_linalg_cholesky_svx(ffi::FFI::unwrap_shared(cholesky),
                                     ffi::FFI::unwrap_unique(x))
    })
}

/// This function solves the system A x = b in-place using the Cholesky decomposition of A held in the matrix cholesky which must have been
/// previously computed by gsl_linalg_cholesky_decomp or gsl_linalg_complex_cholesky_decomp. On input x should contain the right-hand side
/// b, which is replaced by the solution on output.
pub fn complex_cholesky_svx(cholesky: &::MatrixComplexF64, x: &mut ::VectorComplexF64) -> enums::Value {
    enums::Value::from(unsafe {
        ffi::gsl_linalg_complex_cholesky_svx(ffi::FFI::unwrap_shared(cholesky),
                                             ffi::FFI::unwrap_unique(x))
    })
}

/// This function computes the inverse of a matrix from its Cholesky decomposition cholesky, which must have been previously computed by
/// gsl_linalg_cholesky_decomp or gsl_linalg_complex_cholesky_decomp. On output, the inverse is stored in-place in cholesky.
pub fn cholesky_invert(cholesky: &mut ::MatrixF64) -> enums::Value {
    enums::Value::from(unsafe {
        ffi::gsl_linalg_cholesky_invert(ffi::FFI::unwrap_unique(cholesky))
    })
}

/// This function computes the inverse of a matrix from its Cholesky decomposition cholesky, which must have been previously computed by
/// gsl_linalg_cholesky_decomp or gsl_linalg_complex_cholesky_decomp. On output, the inverse is stored in-place in cholesky.
pub fn complex_cholesky_invert(cholesky: &mut ::MatrixComplexF64) -> enums::Value {
    enums::Value::from(unsafe {
        ffi::gsl_linalg_complex_cholesky_invert(ffi::FFI::unwrap_unique(cholesky))
    })
}

/// This function factorizes the symmetric square matrix A into the symmetric tridiagonal decomposition Q T Q^T. On output the diagonal and
/// subdiagonal part of the input matrix A contain the tridiagonal matrix T. The remaining lower triangular part of the input matrix contains
/// the Householder vectors which, together with the Householder coefficients tau, encode the orthogonal matrix Q. This storage scheme is
/// the same as used by LAPACK. The upper triangular part of A is not referenced.
pub fn symmtd_decomp(a: &mut ::MatrixF64, tau: &mut ::VectorF64) -> enums::Value {
    enums::Value::from(unsafe {
        ffi::gsl_linalg_symmtd_decomp(ffi::FFI::unwrap_unique(a), ffi::FFI::unwrap_unique(tau))
    })
}

/// This function unpacks the encoded symmetric tridiagonal decomposition (A, tau) obtained from gsl_linalg_symmtd_decomp into the orthogonal
/// matrix Q, the vector of diagonal elements diag and the vector of subdiagonal elements subdiag.
pub fn symmtd_unpack(
    a: &::MatrixF64,
    tau: &::VectorF64,
    q: &mut ::MatrixF64,
    diag: &mut ::VectorF64,
    subdiag: &mut ::VectorF64,
) -> enums::Value {
    enums::Value::from(unsafe {
        ffi::gsl_linalg_symmtd_unpack(ffi::FFI::unwrap_shared(a),
                                      ffi::FFI::unwrap_shared(tau),
                                      ffi::FFI::unwrap_unique(q),
                                      ffi::FFI::unwrap_unique(diag),
                                      ffi::FFI::unwrap_unique(subdiag))
    })
}

/// This function unpacks the diagonal and subdiagonal of the encoded symmetric tridiagonal decomposition (A, tau) obtained from
/// gsl_linalg_symmtd_decomp into the vectors diag and subdiag.
pub fn symmtd_unpack_T(
    a: &::MatrixF64,
    diag: &mut ::VectorF64,
    subdiag: &mut ::VectorF64,
) -> enums::Value {
    enums::Value::from(unsafe {
        ffi::gsl_linalg_symmtd_unpack_T(ffi::FFI::unwrap_shared(a),
                                        ffi::FFI::unwrap_unique(diag),
                                        ffi::FFI::unwrap_unique(subdiag))
    })
}

/// This function factorizes the hermitian matrix A into the symmetric tridiagonal decomposition U T U^T. On output the real parts of the
/// diagonal and subdiagonal part of the input matrix A contain the tridiagonal matrix T. The remaining lower triangular part of the input
/// matrix contains the Householder vectors which, together with the Householder coefficients tau, encode the unitary matrix U. This storage
/// scheme is the same as used by LAPACK. The upper triangular part of A and imaginary parts of the diagonal are not referenced.
pub fn hermtd_decomp(a: &mut ::MatrixComplexF64, tau: &mut ::VectorComplexF64) -> enums::Value {
    enums::Value::from(unsafe {
        ffi::gsl_linalg_hermtd_decomp(ffi::FFI::unwrap_unique(a), ffi::FFI::unwrap_unique(tau))
    })
}

/// This function unpacks the encoded tridiagonal decomposition (A, tau) obtained from gsl_linalg_hermtd_decomp into the unitary matrix U,
/// the real vector of diagonal elements diag and the real vector of subdiagonal elements subdiag.
pub fn hermtd_unpack(
    a: &::MatrixComplexF64,
    tau: &::VectorComplexF64,
    u: &mut ::MatrixComplexF64,
    diag: &mut ::VectorF64,
    subdiag: &mut ::VectorF64,
) -> enums::Value {
    enums::Value::from(unsafe {
        ffi::gsl_linalg_hermtd_unpack(ffi::FFI::unwrap_shared(a),
                                      ffi::FFI::unwrap_shared(tau),
                                      ffi::FFI::unwrap_unique(u),
                                      ffi::FFI::unwrap_unique(diag),
                                      ffi::FFI::unwrap_unique(subdiag))
    })
}

/// This function unpacks the diagonal and subdiagonal of the encoded tridiagonal decomposition (A, tau) obtained from the
/// gsl_linalg_hermtd_decomp into the real vectors diag and subdiag.
pub fn hermtd_unpack_T(
    a: &::MatrixComplexF64,
    diag: &mut ::VectorF64,
    subdiag: &mut ::VectorF64,
) -> enums::Value {
    enums::Value::from(unsafe {
        ffi::gsl_linalg_hermtd_unpack_T(ffi::FFI::unwrap_shared(a),
                                        ffi::FFI::unwrap_unique(diag),
                                        ffi::FFI::unwrap_unique(subdiag))
    })
}

/// This function computes the Hessenberg decomposition of the matrix A by applying the similarity transformation H = U^T A U. On output, H
/// is stored in the upper portion of A. The information required to construct the matrix U is stored in the lower triangular portion of A.
/// U is a product of N - 2 Householder matrices. The Householder vectors are stored in the lower portion of A (below the subdiagonal) and
/// the Householder coefficients are stored in the vector tau. tau must be of length N.
pub fn hessenberg_decomp(a: &mut ::MatrixF64, tau: &mut ::VectorF64) -> enums::Value {
    enums::Value::from(unsafe {
        ffi::gsl_linalg_hessenberg_decomp(ffi::FFI::unwrap_unique(a), ffi::FFI::unwrap_unique(tau))
    })
}

/// This function constructs the orthogonal matrix U from the information stored in the Hessenberg matrix H along with the vector tau. H and
/// tau are outputs from gsl_linalg_hessenberg_decomp.
pub fn hessenberg_unpack(
    h: &mut ::MatrixF64,
    tau: &mut ::VectorF64,
    u: &mut ::MatrixF64,
) -> enums::Value {
    enums::Value::from(unsafe {
        ffi::gsl_linalg_hessenberg_unpack(ffi::FFI::unwrap_unique(h),
                                          ffi::FFI::unwrap_unique(tau),
                                          ffi::FFI::unwrap_unique(u))
    })
}

/// This function is similar to gsl_linalg_hessenberg_unpack, except it accumulates the matrix U into V, so that V' = VU. The matrix V must
/// be initialized prior to calling this function. Setting V to the identity matrix provides the same result as gsl_linalg_hessenberg_unpack.
/// If H is order N, then V must have N columns but may have any number of rows.
pub fn hessenberg_unpack_accum(
    h: &mut ::MatrixF64,
    tau: &mut ::VectorF64,
    v: &mut ::MatrixF64,
) -> enums::Value {
    enums::Value::from(unsafe {
        ffi::gsl_linalg_hessenberg_unpack_accum(ffi::FFI::unwrap_unique(h),
                                                ffi::FFI::unwrap_unique(tau),
                                                ffi::FFI::unwrap_unique(v))
    })
}

/// This function sets the lower triangular portion of H, below the subdiagonal, to zero. It is useful for clearing out the Householder
/// vectors after calling gsl_linalg_hessenberg_decomp.
pub fn hessenberg_set_zero(h: &mut ::MatrixF64) -> enums::Value {
    enums::Value::from(unsafe { ffi::gsl_linalg_hessenberg_set_zero(ffi::FFI::unwrap_unique(h)) })
}

/// This function computes the Hessenberg-Triangular decomposition of the matrix pair (A, B). On output, H is stored in A, and R is stored
/// in B. If U and V are provided (they may be null), the similarity transformations are stored in them. Additional workspace of length N
/// is needed in work.
pub fn hesstri_decomp(
    a: &mut ::MatrixF64,
    b: &mut ::MatrixF64,
    u: &mut ::MatrixF64,
    v: &mut ::MatrixF64,
    work: &mut ::VectorF64,
) -> enums::Value {
    enums::Value::from(unsafe {
        ffi::gsl_linalg_hesstri_decomp(ffi::FFI::unwrap_unique(a),
                                       ffi::FFI::unwrap_unique(b),
                                       ffi::FFI::unwrap_unique(u),
                                       ffi::FFI::unwrap_unique(v),
                                       ffi::FFI::unwrap_unique(work))
    })
}

/// This function factorizes the M-by-N matrix A into bidiagonal form U B V^T. The diagonal and superdiagonal of the matrix B are stored in
/// the diagonal and superdiagonal of A. The orthogonal matrices U and V are stored as compressed Householder vectors in the remaining elements
/// of A. The Householder coefficients are stored in the vectors tau_U and tau_V. The length of tau_U must equal the number of elements in
/// the diagonal of A and the length of tau_V should be one element shorter.
pub fn bidiag_decomp(
    a: &mut ::MatrixF64,
    tau_u: &mut ::VectorF64,
    tau_v: &mut ::VectorF64,
) -> enums::Value {
    enums::Value::from(unsafe {
        ffi::gsl_linalg_bidiag_decomp(ffi::FFI::unwrap_unique(a),
                                      ffi::FFI::unwrap_unique(tau_u),
                                      ffi::FFI::unwrap_unique(tau_v))
    })
}

/// This function unpacks the bidiagonal decomposition of A produced by gsl_linalg_bidiag_decomp, (A, tau_U, tau_V) into the separate orthogonal
/// matrices U, V and the diagonal vector diag and superdiagonal superdiag. Note that U is stored as a compact M-by-N orthogonal matrix satisfying
/// U^T U = I for efficiency.
pub fn bidiag_unpack(
    a: &mut ::MatrixF64,
    tau_u: &::VectorF64,
    u: &mut ::MatrixF64,
    tau_v: &::VectorF64,
    v: &mut ::MatrixF64,
    diag: &mut ::VectorF64,
    superdiag: &mut ::VectorF64,
) -> enums::Value {
    enums::Value::from(unsafe {
        ffi::gsl_linalg_bidiag_unpack(ffi::FFI::unwrap_unique(a),
                                      ffi::FFI::unwrap_shared(tau_u),
                                      ffi::FFI::unwrap_unique(u),
                                      ffi::FFI::unwrap_shared(tau_v),
                                      ffi::FFI::unwrap_unique(v),
                                      ffi::FFI::unwrap_unique(diag),
                                      ffi::FFI::unwrap_unique(superdiag))
    })
}

/// This function unpacks the bidiagonal decomposition of A produced by gsl_linalg_bidiag_decomp, (A, tau_U, tau_V) into the separate orthogonal
/// matrices U, V and the diagonal vector diag and superdiagonal superdiag. The matrix U is stored in-place in A.
pub fn bidiag_unpack2(
    a: &mut ::MatrixF64,
    tau_u: &mut ::VectorF64,
    tau_v: &mut ::VectorF64,
    v: &mut ::MatrixF64,
) -> enums::Value {
    enums::Value::from(unsafe {
        ffi::gsl_linalg_bidiag_unpack2(ffi::FFI::unwrap_unique(a),
                                       ffi::FFI::unwrap_unique(tau_u),
                                       ffi::FFI::unwrap_unique(tau_v),
                                       ffi::FFI::unwrap_unique(v))
    })
}

/// This function unpacks the diagonal and superdiagonal of the bidiagonal decomposition of A from gsl_linalg_bidiag_decomp, into the diagonal
/// vector diag and superdiagonal vector superdiag.
pub fn bidiag_unpack_B(
    a: &::MatrixF64,
    diag: &mut ::VectorF64,
    superdiag: &mut ::VectorF64,
) -> enums::Value {
    enums::Value::from(unsafe {
        ffi::gsl_linalg_bidiag_unpack_B(ffi::FFI::unwrap_shared(a),
                                        ffi::FFI::unwrap_unique(diag),
                                        ffi::FFI::unwrap_unique(superdiag))
    })
}

/// This function prepares a Householder transformation P = I - \tau v v^T which can be used to zero all the elements of the input vector except
/// the first. On output the transformation is stored in the vector v and the scalar \tau is returned.
pub fn householder_transform(v: &mut ::VectorF64) -> f64 {
    unsafe { ffi::gsl_linalg_householder_transform(ffi::FFI::unwrap_unique(v)) }
}

/// This function prepares a Householder transformation P = I - \tau v v^T which can be used to zero all the elements of the input vector except
/// the first. On output the transformation is stored in the vector v and the scalar \tau is returned.
pub fn complex_householder_transform(v: &mut ::VectorComplexF64) -> ::ComplexF64 {
    unsafe {
        ::std::mem::transmute(ffi::gsl_linalg_complex_householder_transform(ffi::FFI::unwrap_unique(v)))
    }
}

/// This function applies the Householder matrix P defined by the scalar tau and the vector v to the left-hand side of the matrix A. On output
/// the result P A is stored in A.
pub fn householder_hm(tau: f64, v: &::VectorF64, a: &mut ::MatrixF64) -> enums::Value {
    enums::Value::from(unsafe {
        ffi::gsl_linalg_householder_hm(tau, ffi::FFI::unwrap_shared(v), ffi::FFI::unwrap_unique(a))
    })
}

/// This function applies the Householder matrix P defined by the scalar tau and the vector v to the left-hand side of the matrix A. On output
/// the result P A is stored in A.
pub fn complex_householder_hm(
    tau: &::ComplexF64,
    v: &::VectorComplexF64,
    a: &mut ::MatrixComplexF64,
) -> enums::Value {
    enums::Value::from(unsafe {
        ffi::gsl_linalg_complex_householder_hm(::std::mem::transmute(*tau),
                                               ffi::FFI::unwrap_shared(v),
                                               ffi::FFI::unwrap_unique(a))
    })
}

/// This function applies the Householder matrix P defined by the scalar tau and the vector v to the right-hand side of the matrix A. On output
/// the result A P is stored in A.
pub fn householder_mh(tau: f64, v: &::VectorF64, a: &mut ::MatrixF64) -> enums::Value {
    enums::Value::from(unsafe {
        ffi::gsl_linalg_householder_mh(tau, ffi::FFI::unwrap_shared(v), ffi::FFI::unwrap_unique(a))
    })
}

/// This function applies the Householder matrix P defined by the scalar tau and the vector v to the right-hand side of the matrix A. On output
/// the result A P is stored in A.
pub fn complex_householder_mh(
    tau: &::ComplexF64,
    v: &::VectorComplexF64,
    a: &mut ::MatrixComplexF64,
) -> enums::Value {
    enums::Value::from(unsafe {
        ffi::gsl_linalg_complex_householder_mh(::std::mem::transmute(*tau),
                                               ffi::FFI::unwrap_shared(v),
                                               ffi::FFI::unwrap_unique(a))
    })
}

/// This function applies the Householder transformation P defined by the scalar tau and the vector v to the vector w. On output the result P
/// w is stored in w.
pub fn householder_hv(tau: f64, v: &::VectorF64, w: &mut ::MatrixF64) -> enums::Value {
    enums::Value::from(unsafe {
        ffi::gsl_linalg_householder_hv(tau, ffi::FFI::unwrap_shared(v), ffi::FFI::unwrap_unique(w))
    })
}

/// This function applies the Householder transformation P defined by the scalar tau and the vector v to the vector w. On output the result P
/// w is stored in w.
pub fn complex_householder_hv(
    tau: &::ComplexF64,
    v: &::VectorComplexF64,
    w: &mut ::MatrixComplexF64,
) -> enums::Value {
    enums::Value::from(unsafe {
        ffi::gsl_linalg_complex_householder_hv(::std::mem::transmute(*tau),
                                               ffi::FFI::unwrap_shared(v),
                                               ffi::FFI::unwrap_unique(w))
    })
}

/// This function solves the system A x = b directly using Householder transformations. On output the solution is stored in x and b is not
/// modified. The matrix A is destroyed by the Householder transformations.
pub fn HH_solve(mut a: ::MatrixF64, b: &::VectorF64, x: &mut ::VectorF64) -> enums::Value {
    enums::Value::from(unsafe {
        ffi::gsl_linalg_HH_solve(ffi::FFI::unwrap_unique(&mut a),
                                 ffi::FFI::unwrap_shared(b),
                                 ffi::FFI::unwrap_unique(x))
    })
}

/// This function solves the system A x = b in-place using Householder transformations. On input x should contain the right-hand side b,
/// which is replaced by the solution on output. The matrix A is destroyed by the Householder transformations.
pub fn HH_svx(mut a: ::MatrixF64, x: &mut ::VectorF64) -> enums::Value {
    enums::Value::from(unsafe {
        ffi::gsl_linalg_HH_svx(ffi::FFI::unwrap_unique(&mut a), ffi::FFI::unwrap_unique(x))
    })
}

/// This function solves the general N-by-N system A x = b where A is tridiagonal (N >= 2). The super-diagonal and sub-diagonal vectors
/// e and f must be one element shorter than the diagonal vector diag. The form of A for the 4-by-4 case is shown below,
///
/// ```text
/// A = ( d_0 e_0  0   0  )
///     ( f_0 d_1 e_1  0  )
///     (  0  f_1 d_2 e_2 )
///     (  0   0  f_2 d_3 )
/// ```
pub fn solve_tridiag(
    diag: &::VectorF64,
    e: &::VectorF64,
    f: &::VectorF64,
    b: &::VectorF64,
    x: &mut ::VectorF64,
) -> enums::Value {
    enums::Value::from(unsafe {
        ffi::gsl_linalg_solve_tridiag(ffi::FFI::unwrap_shared(diag),
                                      ffi::FFI::unwrap_shared(e),
                                      ffi::FFI::unwrap_shared(f),
                                      ffi::FFI::unwrap_shared(b),
                                      ffi::FFI::unwrap_unique(x))
    })
}

/// This function solves the general N-by-N system A x = b where A is symmetric tridiagonal (N >= 2). The off-diagonal vector e must be one
/// element shorter than the diagonal vector diag. The form of A for the 4-by-4 case is shown below,
///
/// ```text
/// A = ( d_0 e_0  0   0  )
///     ( e_0 d_1 e_1  0  )
///     (  0  e_1 d_2 e_2 )
///     (  0   0  e_2 d_3 )
/// ```
pub fn solve_symm_tridiag(
    diag: &::VectorF64,
    e: &::VectorF64,
    b: &::VectorF64,
    x: &mut ::VectorF64,
) -> enums::Value {
    enums::Value::from(unsafe {
        ffi::gsl_linalg_solve_symm_tridiag(ffi::FFI::unwrap_shared(diag),
                                           ffi::FFI::unwrap_shared(e),
                                           ffi::FFI::unwrap_shared(b),
                                           ffi::FFI::unwrap_unique(x))
    })
}

/// This function solves the general N-by-N system A x = b where A is cyclic tridiagonal (N >= 3). The cyclic super-diagonal and sub-diagonal
/// vectors e and f must have the same number of elements as the diagonal vector diag. The form of A for the 4-by-4 case is shown below,
///
/// ```text
/// A = ( d_0 e_0  0  f_3 )
///     ( f_0 d_1 e_1  0  )
///     (  0  f_1 d_2 e_2 )
///     ( e_3  0  f_2 d_3 )
/// ```
pub fn solve_cyc_tridiag(
    diag: &::VectorF64,
    e: &::VectorF64,
    f: &::VectorF64,
    b: &::VectorF64,
    x: &mut ::VectorF64,
) -> enums::Value {
    enums::Value::from(unsafe {
        ffi::gsl_linalg_solve_cyc_tridiag(ffi::FFI::unwrap_shared(diag),
                                          ffi::FFI::unwrap_shared(e),
                                          ffi::FFI::unwrap_shared(f),
                                          ffi::FFI::unwrap_shared(b),
                                          ffi::FFI::unwrap_unique(x))
    })
}

/// This function solves the general N-by-N system A x = b where A is symmetric cyclic tridiagonal (N >= 3). The cyclic off-diagonal vector
/// e must have the same number of elements as the diagonal vector diag. The form of A for the 4-by-4 case is shown below,
///
/// ```text
/// A = ( d_0 e_0  0  e_3 )
///     ( e_0 d_1 e_1  0  )
///     (  0  e_1 d_2 e_2 )
///     ( e_3  0  e_2 d_3 )
/// ```
pub fn solve_symm_cyc_tridiag(
    diag: &::VectorF64,
    e: &::VectorF64,
    b: &::VectorF64,
    x: &mut ::VectorF64,
) -> enums::Value {
    enums::Value::from(unsafe {
        ffi::gsl_linalg_solve_symm_cyc_tridiag(ffi::FFI::unwrap_shared(diag),
                                               ffi::FFI::unwrap_shared(e),
                                               ffi::FFI::unwrap_shared(b),
                                               ffi::FFI::unwrap_unique(x))
    })
}

/// This function replaces the matrix A with its balanced counterpart and stores the diagonal elements of the similarity transformation into
/// the vector D.
pub fn balance_matrix(a: &mut ::MatrixF64, d: &mut ::VectorF64) -> enums::Value {
    enums::Value::from(unsafe {
        ffi::gsl_linalg_balance_matrix(ffi::FFI::unwrap_unique(a), ffi::FFI::unwrap_unique(d))
    })
}