1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
//
// A rust binding for the GSL library by Guillaume Gomez (guillaume1.gomez@gmail.com)
//

use std::fmt;
use std::fmt::{Formatter, Debug};
use types::{ComplexF32, ComplexF64};
use ffi;
use enums;

pub struct VectorComplexF64 {
    vec: *mut ffi::gsl_vector_complex
}

impl VectorComplexF64 {
    #[doc(hidden)]
    pub fn get_ffi(&self) -> *mut ffi::gsl_vector_complex {
        self.vec
    }

    /// create a new VectorComplexF64 with all elements set to zero
    pub fn new(size: usize) -> Option<VectorComplexF64> {
        let tmp = unsafe { ffi::gsl_vector_complex_calloc(size) };

        if tmp.is_null() {
            None
        } else {
            Some(VectorComplexF64 {
                vec: tmp
            })
        }
    }

    pub fn from_slice(slice: &[ComplexF64]) -> Option<VectorComplexF64> {
        let tmp = unsafe { ffi::gsl_vector_complex_alloc(slice.len() as usize) };

        if tmp.is_null() {
            None
        } else {
            let mut v = VectorComplexF64 {
                vec: tmp
            };
            let mut pos = 0usize;

            for tmp in slice.iter() {
                v.set(pos, tmp);
                pos += 1;
            }
            Some(v)
        }
    }

    pub fn len(&self) -> usize {
        if self.vec.is_null() {
            0usize
        } else {
            unsafe { (*self.vec).size }
        }
    }

    /// This function returns the i-th element of a vector v. If i lies outside the allowed range of 0 to n-1 then the error handler is invoked and 0 is returned.
    pub fn get(&self, i: usize) -> ComplexF64 {
        unsafe { ::std::mem::transmute(ffi::gsl_vector_complex_get(self.vec, i)) }
    }

    /// This function sets the value of the i-th element of a vector v to x. If i lies outside the allowed range of 0 to n-1 then the error handler is invoked.
    pub fn set(&mut self, i: usize, x: &ComplexF64) -> &VectorComplexF64 {
        unsafe { ffi::gsl_vector_complex_set(self.vec, i, ::std::mem::transmute(*x)) };
        self
    }

    /// This function sets all the elements of the vector v to the value x.
    pub fn set_all(&mut self, x: &ComplexF64) -> &VectorComplexF64 {
        unsafe { ffi::gsl_vector_complex_set_all(self.vec, ::std::mem::transmute(*x)) };
        self
    }

    /// This function sets all the elements of the vector v to zero.
    pub fn set_zero(&mut self) -> &VectorComplexF64 {
        unsafe { ffi::gsl_vector_complex_set_zero(self.vec) };
        self
    }

    /// This function makes a basis vector by setting all the elements of the vector v to zero except for the i-th element which is set to one.
    pub fn set_basis(&mut self, i: usize) -> &VectorComplexF64 {
        unsafe { ffi::gsl_vector_complex_set_basis(self.vec, i) };
        self
    }

    /// This function copies the elements of the other vector into the self vector. The two vectors must have the same length.
    pub fn copy_from(&mut self, other: &VectorComplexF64) -> enums::Value {
        unsafe { ffi::gsl_vector_complex_memcpy(self.vec, other.vec) }
    }

    /// This function copies the elements of the self vector into the other vector. The two vectors must have the same length.
    pub fn copy_to(&self, other: &mut VectorComplexF64) -> enums::Value {
        unsafe { ffi::gsl_vector_complex_memcpy(other.vec, self.vec) }
    }

    /// This function exchanges the elements of the vectors by copying. The two vectors must have the same length.
    pub fn swap(&mut self, other: &mut VectorComplexF64) -> enums::Value {
        unsafe { ffi::gsl_vector_complex_swap(other.vec, self.vec) }
    }

    /// This function exchanges the i-th and j-th elements of the vector v in-place.
    pub fn swap_elements(&mut self, i: usize, j: usize) -> enums::Value {
        unsafe { ffi::gsl_vector_complex_swap_elements(self.vec, i, j) }
    }

    /// This function reverses the order of the elements of the vector v.
    pub fn reverse(&mut self) -> enums::Value {
        unsafe { ffi::gsl_vector_complex_reverse(self.vec) }
    }

    /// This function adds the elements of the other vector to the elements of the self vector.
    /// The result a_i <- a_i + b_i is stored in self and other remains unchanged. The two vectors must have the same length.
    pub fn add(&mut self, other: &VectorComplexF64) -> enums::Value {
        unsafe { ffi::gsl_vector_complex_add(self.vec, other.vec) }
    }

    /// This function subtracts the elements of the self vector from the elements of the other vector.
    /// The result a_i <- a_i - b_i is stored in self and other remains unchanged. The two vectors must have the same length.
    pub fn sub(&mut self, other: &VectorComplexF64) -> enums::Value {
        unsafe { ffi::gsl_vector_complex_sub(self.vec, other.vec) }
    }

    /// This function multiplies the elements of the self vector a by the elements of the other vector.
    /// The result a_i <- a_i * b_i is stored in self and other remains unchanged. The two vectors must have the same length.
    pub fn mul(&mut self, other: &VectorComplexF64) -> enums::Value {
        unsafe { ffi::gsl_vector_complex_mul(self.vec, other.vec) }
    }

    /// This function divides the elements of the self vector by the elements of the other vector.
    /// The result a_i <- a_i / b_i is stored in self and other remains unchanged. The two vectors must have the same length.
    pub fn div(&mut self, other: &VectorComplexF64) -> enums::Value {
        unsafe { ffi::gsl_vector_complex_div(self.vec, other.vec) }
    }

    /// This function multiplies the elements of the self vector by the constant factor x. The result a_i <- a_i is stored in self.
    pub fn scale(&mut self, x: &ComplexF64) -> enums::Value {
        unsafe { ffi::gsl_vector_complex_scale(self.vec, ::std::mem::transmute(*x)) }
    }

    /// This function adds the constant value x to the elements of the self vector. The result a_i <- a_i + x is stored in self.
    pub fn add_constant(&mut self, x: &ComplexF64) -> enums::Value {
        unsafe { ffi::gsl_vector_complex_add_constant(self.vec, ::std::mem::transmute(*x)) }
    }

    /// This function returns true if all the elements of the self vector are equal to 0.
    pub fn is_null(&self) -> bool {
        match unsafe { ffi::gsl_vector_complex_isnull(self.vec) } {
            1 => true,
            _ => false
        }
    }

    /// This function returns true if all the elements of the self vector are stricly positive.
    pub fn is_pos(&self) -> bool {
        match unsafe { ffi::gsl_vector_complex_ispos(self.vec) } {
            1 => true,
            _ => false
        }
    }

    /// This function returns true if all the elements of the self vector are stricly negative.
    pub fn is_neg(&self) -> bool {
        match unsafe { ffi::gsl_vector_complex_isneg(self.vec) } {
            1 => true,
            _ => false
        }
    }

    /// This function returns true if all the elements of the self vector are stricly non-negative.
    pub fn is_non_neg(&self) -> bool {
        match unsafe { ffi::gsl_vector_complex_isnonneg(self.vec) } {
            1 => true,
            _ => false
        }
    }

    pub fn equal(&self, other: &VectorComplexF64) -> bool {
        match unsafe { ffi::gsl_vector_complex_equal(self.vec, other.vec) } {
            1 => true,
            _ => false
        }
    }

    // I'll find a way to do that later
    /*pub fn as_slice<'a>(&self) -> &'a [f64] {
        unsafe {
            if self.vec.is_null() {
                let tmp : Vec<f64> = Vec::new();

                tmp.as_ref()
            } else {
                let tmp : CSlice<f64> = CSlice::new((*self.vec).data, (*self.vec).size as usize);

                tmp.as_ref()
            }
        }
    }*/

    pub fn clone(&self) -> Option<VectorComplexF64> {
        unsafe {
            if self.vec.is_null() {
                None
            } else {
                match VectorComplexF64::new((*self.vec).size) {
                    Some(mut v) => {
                        v.copy_from(self);
                        Some(v)
                    }
                    None => None
                }
            }
        }
    }
}

impl Drop for VectorComplexF64 {
    fn drop(&mut self) {
        unsafe { ffi::gsl_vector_complex_free(self.vec) };
        self.vec = ::std::ptr::null_mut();
    }
}

impl Debug for VectorComplexF64 {
    #[allow(unused_must_use)]
    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
        unsafe {
            write!(f, "[");
            for x in 0usize..(*self.vec).size {
                if x < (*self.vec).size - 1 {
                    write!(f, "{:?}, ", self.get(x));
                } else {
                    write!(f, "{:?}", self.get(x));
                }
            }
        }
        write!(f, "]")
    }
}

impl ffi::FFI<ffi::gsl_vector_complex> for VectorComplexF64 {
    fn wrap(r: *mut ffi::gsl_vector_complex) -> VectorComplexF64 {
        VectorComplexF64 {
            vec: r
        }
    }

    fn soft_wrap(r: *mut ffi::gsl_vector_complex) -> VectorComplexF64 {
        Self::wrap(r)
    }

    fn unwrap_shared(v: &VectorComplexF64) -> *const ffi::gsl_vector_complex {
        v.vec as *const _
    }

    fn unwrap_unique(v: &mut VectorComplexF64) -> *mut ffi::gsl_vector_complex {
        v.vec
    }
}

pub struct VectorComplexF32 {
    vec: *mut ffi::gsl_vector_complex_float
}

impl VectorComplexF32 {
    #[doc(hidden)]
    pub fn get_ffi(&self) -> *mut ffi::gsl_vector_complex_float {
        self.vec
    }

    /// create a new VectorComplexF32 with all elements set to zero
    pub fn new(size: usize) -> Option<VectorComplexF32> {
        let tmp = unsafe { ffi::gsl_vector_complex_float_calloc(size) };

        if tmp.is_null() {
            None
        } else {
            Some(VectorComplexF32 {
                vec: tmp
            })
        }
    }

    pub fn from_slice(slice: &[ComplexF32]) -> Option<VectorComplexF32> {
        let tmp = unsafe { ffi::gsl_vector_complex_float_alloc(slice.len() as usize) };

        if tmp.is_null() {
            None
        } else {
            let mut v = VectorComplexF32 {
                vec: tmp
            };
            let mut pos = 0usize;

            for tmp in slice.iter() {
                v.set(pos, tmp);
                pos += 1;
            }
            Some(v)
        }
    }

    pub fn len(&self) -> usize {
        if self.vec.is_null() {
            0usize
        } else {
            unsafe { (*self.vec).size }
        }
    }

    /// This function returns the i-th element of a vector v. If i lies outside the allowed range of 0 to n-1 then the error handler is invoked and 0 is returned.
    pub fn get(&self, i: usize) -> ComplexF32 {
        unsafe { ::std::mem::transmute(ffi::gsl_vector_complex_float_get(self.vec, i)) }
    }

    /// This function sets the value of the i-th element of a vector v to x. If i lies outside the allowed range of 0 to n-1 then the error handler is invoked.
    pub fn set(&mut self, i: usize, x: &ComplexF32) -> &VectorComplexF32 {
        unsafe { ffi::gsl_vector_complex_float_set(self.vec, i, ::std::mem::transmute(*x)) };
        self
    }

    /// This function sets all the elements of the vector v to the value x.
    pub fn set_all(&mut self, x: &ComplexF32) -> &VectorComplexF32 {
        unsafe { ffi::gsl_vector_complex_float_set_all(self.vec, ::std::mem::transmute(*x)) };
        self
    }

    /// This function sets all the elements of the vector v to zero.
    pub fn set_zero(&mut self) -> &VectorComplexF32 {
        unsafe { ffi::gsl_vector_complex_float_set_zero(self.vec) };
        self
    }

    /// This function makes a basis vector by setting all the elements of the vector v to zero except for the i-th element which is set to one.
    pub fn set_basis(&mut self, i: usize) -> &VectorComplexF32 {
        unsafe { ffi::gsl_vector_complex_float_set_basis(self.vec, i) };
        self
    }

    /// This function copies the elements of the other vector into the self vector. The two vectors must have the same length.
    pub fn copy_from(&mut self, other: &VectorComplexF32) -> enums::Value {
        unsafe { ffi::gsl_vector_complex_float_memcpy(self.vec, other.vec) }
    }

    /// This function copies the elements of the self vector into the other vector. The two vectors must have the same length.
    pub fn copy_to(&self, other: &mut VectorComplexF32) -> enums::Value {
        unsafe { ffi::gsl_vector_complex_float_memcpy(other.vec, self.vec) }
    }

    /// This function exchanges the elements of the vectors by copying. The two vectors must have the same length.
    pub fn swap(&mut self, other: &mut VectorComplexF32) -> enums::Value {
        unsafe { ffi::gsl_vector_complex_float_swap(other.vec, self.vec) }
    }

    /// This function exchanges the i-th and j-th elements of the vector v in-place.
    pub fn swap_elements(&mut self, i: usize, j: usize) -> enums::Value {
        unsafe { ffi::gsl_vector_complex_float_swap_elements(self.vec, i, j) }
    }

    /// This function reverses the order of the elements of the vector v.
    pub fn reverse(&mut self) -> enums::Value {
        unsafe { ffi::gsl_vector_complex_float_reverse(self.vec) }
    }

    /// This function adds the elements of the other vector to the elements of the self vector.
    /// The result a_i <- a_i + b_i is stored in self and other remains unchanged. The two vectors must have the same length.
    pub fn add(&mut self, other: &VectorComplexF32) -> enums::Value {
        unsafe { ffi::gsl_vector_complex_float_add(self.vec, other.vec) }
    }

    /// This function subtracts the elements of the self vector from the elements of the other vector.
    /// The result a_i <- a_i - b_i is stored in self and other remains unchanged. The two vectors must have the same length.
    pub fn sub(&mut self, other: &VectorComplexF32) -> enums::Value {
        unsafe { ffi::gsl_vector_complex_float_sub(self.vec, other.vec) }
    }

    /// This function multiplies the elements of the self vector a by the elements of the other vector.
    /// The result a_i <- a_i * b_i is stored in self and other remains unchanged. The two vectors must have the same length.
    pub fn mul(&mut self, other: &VectorComplexF32) -> enums::Value {
        unsafe { ffi::gsl_vector_complex_float_mul(self.vec, other.vec) }
    }

    /// This function divides the elements of the self vector by the elements of the other vector.
    /// The result a_i <- a_i / b_i is stored in self and other remains unchanged. The two vectors must have the same length.
    pub fn div(&mut self, other: &VectorComplexF32) -> enums::Value {
        unsafe { ffi::gsl_vector_complex_float_div(self.vec, other.vec) }
    }

    /// This function multiplies the elements of the self vector by the constant factor x. The result a_i <- a_i is stored in self.
    pub fn scale(&mut self, x: &ComplexF32) -> enums::Value {
        unsafe { ffi::gsl_vector_complex_float_scale(self.vec, ::std::mem::transmute(*x)) }
    }

    /// This function adds the constant value x to the elements of the self vector. The result a_i <- a_i + x is stored in self.
    pub fn add_constant(&mut self, x: &ComplexF32) -> enums::Value {
        unsafe { ffi::gsl_vector_complex_float_add_constant(self.vec, ::std::mem::transmute(*x)) }
    }

    /// This function returns true if all the elements of the self vector are equal to 0.
    pub fn is_null(&self) -> bool {
        match unsafe { ffi::gsl_vector_complex_float_isnull(self.vec) } {
            1 => true,
            _ => false
        }
    }

    /// This function returns true if all the elements of the self vector are stricly positive.
    pub fn is_pos(&self) -> bool {
        match unsafe { ffi::gsl_vector_complex_float_ispos(self.vec) } {
            1 => true,
            _ => false
        }
    }

    /// This function returns true if all the elements of the self vector are stricly negative.
    pub fn is_neg(&self) -> bool {
        match unsafe { ffi::gsl_vector_complex_float_isneg(self.vec) } {
            1 => true,
            _ => false
        }
    }

    /// This function returns true if all the elements of the self vector are stricly non-negative.
    pub fn is_non_neg(&self) -> bool {
        match unsafe { ffi::gsl_vector_complex_float_isnonneg(self.vec) } {
            1 => true,
            _ => false
        }
    }

    pub fn equal(&self, other: &VectorComplexF32) -> bool {
        match unsafe { ffi::gsl_vector_complex_float_equal(self.vec,
            other.vec) } {
            1 => true,
            _ => false
        }
    }

    // I'll find a way to do that later
    /*pub fn as_slice<'a>(&self) -> &'a [f32] {
        unsafe {
            if self.vec.is_null() {
                let tmp : Vec<f32> = Vec::new();

                tmp.as_ref()
            } else {
                let tmp : CSlice<f32> = CSlice::new((*self.vec).data, (*self.vec).size as usize);

                tmp.as_ref()
            }
        }
    }*/

    pub fn clone(&self) -> Option<VectorComplexF32> {
        unsafe {
            if self.vec.is_null() {
                None
            } else {
                match VectorComplexF32::new((*self.vec).size) {
                    Some(mut v) => {
                        v.copy_from(self);
                        Some(v)
                    }
                    None => None
                }
            }
        }
    }
}

impl Drop for VectorComplexF32 {
    fn drop(&mut self) {
        unsafe { ffi::gsl_vector_complex_float_free(self.vec) };
        self.vec = ::std::ptr::null_mut();
    }
}

impl Debug for VectorComplexF32 {
    #[allow(unused_must_use)]
    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
        unsafe {
            write!(f, "[");
            for x in 0usize..(*self.vec).size {
                if x < (*self.vec).size - 1 {
                    write!(f, "{:?}, ", self.get(x));
                } else {
                    write!(f, "{:?}", self.get(x));
                }
            }
        }
        write!(f, "]")
    }
}

impl ffi::FFI<ffi::gsl_vector_complex_float> for VectorComplexF32 {
    fn wrap(r: *mut ffi::gsl_vector_complex_float) -> VectorComplexF32 {
        VectorComplexF32 {
            vec: r
        }
    }

    fn soft_wrap(r: *mut ffi::gsl_vector_complex_float) -> VectorComplexF32 {
        Self::wrap(r)
    }

    fn unwrap_shared(v: &VectorComplexF32) -> *const ffi::gsl_vector_complex_float {
        v.vec as *const _
    }

    fn unwrap_unique(v: &mut VectorComplexF32) -> *mut ffi::gsl_vector_complex_float {
        v.vec
    }
}