Module rgsl::types::chebyshev[][src]

#Chebyshev Approximations

This chapter describes routines for computing Chebyshev approximations to univariate functions. A Chebyshev approximation is a truncation of the series f(x) = \sum c_n T_n(x), where the Chebyshev polynomials T_n(x) = \cos(n \arccos x) provide an orthogonal basis of polynomials on the interval [-1,1] with the weight function 1 / \sqrt{1-x^2}. The first few Chebyshev polynomials are, T_0(x) = 1, T_1(x) = x, T_2(x) = 2 x^2 - 1.

For further information see Abramowitz & Stegun, Chapter 22.

##Definitions

The approximation is made over the range [a,b] using order+1 terms, including the coefficient c[0]. The series is computed using the following convention,

f(x) = (c_0 / 2) + \sum_{n=1} c_n T_n(x)

which is needed when accessing the coefficients directly.

##References and Further Reading

The following paper describes the use of Chebyshev series,

R. Broucke, “Ten Subroutines for the Manipulation of Chebyshev Series [C1] (Algorithm 446)”. Communications of the ACM 16(4), 254–256 (1973)

Structs

ChebSeries