Module rgsl::blas::level2[][src]

Functions

cgemv

This function computes the matrix-vector product and sum y = \alpha op(A) x + \beta y, where op(A) = A, A^T, A^H for TransA = CblasNoTrans, CblasTrans, CblasConjTrans.

cgerc

This function computes the conjugate rank-1 update A = \alpha x y^H + A of the matrix A.

cgeru

This function computes the rank-1 update A = \alpha x y^T + A of the matrix A.

chemv

These functions compute the matrix-vector product and sum y = \alpha A x + \beta y for the hermitian matrix A. Since the matrix A is hermitian only its upper half or lower half need to be stored. When Uplo is CblasUpper then the upper triangle and diagonal of A are used, and when Uplo is CblasLower then the lower triangle and diagonal of A are used. The imaginary elements of the diagonal are automatically assumed to be zero and are not referenced.

cher

These functions compute the hermitian rank-1 update A = \alpha x x^H + A of the hermitian matrix A. Since the matrix A is hermitian only its upper half or lower half need to be stored. When Uplo is CblasUpper then the upper triangle and diagonal of A are used, and when Uplo is CblasLower then the lower triangle and diagonal of A are used. The imaginary elements of the diagonal are automatically set to zero.

cher2

These functions compute the hermitian rank-2 update A = \alpha x y^H + \alpha^* y x^H + A of the hermitian matrix A. Since the matrix A is hermitian only its upper half or lower half need to be stored. When Uplo is CblasUpper then the upper triangle and diagonal of A are used, and when Uplo is CblasLower then the lower triangle and diagonal of A are used. The imaginary elements of the diagonal are automatically set to zero.

ctrmv

This function computes the matrix-vector product x = op(A) x for the triangular matrix A, where op(A) = A, A^T, A^H for TransA = CblasNoTrans, CblasTrans, CblasConjTrans. When Uplo is CblasUpper then the upper triangle of A is used, and when Uplo is CblasLower then the lower triangle of A is used. If Diag is CblasNonUnit then the diagonal of the matrix is used, but if Diag is CblasUnit then the diagonal elements of the matrix A are taken as unity and are not referenced.

ctrsv

This function computes inv(op(A)) x for x, where op(A) = A, A^T, A^H for TransA = CblasNoTrans, CblasTrans, CblasConjTrans. When Uplo is CblasUpper then the upper triangle of A is used, and when Uplo is CblasLower then the lower triangle of A is used. If Diag is CblasNonUnit then the diagonal of the matrix is used, but if Diag is CblasUnit then the diagonal elements of the matrix A are taken as unity and are not referenced.

dgemv

This function computes the matrix-vector product and sum y = \alpha op(A) x + \beta y, where op(A) = A, A^T, A^H for TransA = CblasNoTrans, CblasTrans, CblasConjTrans.

dger

This function computes the rank-1 update A = \alpha x y^T + A of the matrix A.

dsymv

These functions compute the matrix-vector product and sum y = \alpha A x + \beta y for the symmetric matrix A. Since the matrix A is symmetric only its upper half or lower half need to be stored. When Uplo is CblasUpper then the upper triangle and diagonal of A are used, and when Uplo is CblasLower then the lower triangle and diagonal of A are used.

dsyr

This function computes the symmetric rank-1 update A = \alpha x x^T + A of the symmetric matrix A. Since the matrix A is symmetric only its upper half or lower half need to be stored. When Uplo is CblasUpper then the upper triangle and diagonal of A are used, and when Uplo is CblasLower then the lower triangle and diagonal of A are used.

dsyr2

These functions compute the symmetric rank-2 update A = \alpha x y^T + \alpha y x^T + A of the symmetric matrix A. Since the matrix A is symmetric only its upper half or lower half need to be stored. When Uplo is CblasUpper then the upper triangle and diagonal of A are used, and when Uplo is CblasLower then the lower triangle and diagonal of A are used.

dtrmv

This function computes the matrix-vector product x = op(A) x for the triangular matrix A, where op(A) = A, A^T, A^H for TransA = CblasNoTrans, CblasTrans, CblasConjTrans. When Uplo is CblasUpper then the upper triangle of A is used, and when Uplo is CblasLower then the lower triangle of A is used. If Diag is CblasNonUnit then the diagonal of the matrix is used, but if Diag is CblasUnit then the diagonal elements of the matrix A are taken as unity and are not referenced.

dtrsv

This function computes inv(op(A)) x for x, where op(A) = A, A^T, A^H for TransA = CblasNoTrans, CblasTrans, CblasConjTrans. When Uplo is CblasUpper then the upper triangle of A is used, and when Uplo is CblasLower then the lower triangle of A is used. If Diag is CblasNonUnit then the diagonal of the matrix is used, but if Diag is CblasUnit then the diagonal elements of the matrix A are taken as unity and are not referenced.

sgemv

This function computes the matrix-vector product and sum y = \alpha op(A) x + \beta y, where op(A) = A, A^T, A^H for TransA = CblasNoTrans, CblasTrans, CblasConjTrans.

sger

This function computes the rank-1 update A = \alpha x y^T + A of the matrix A.

ssymv

These functions compute the matrix-vector product and sum y = \alpha A x + \beta y for the symmetric matrix A. Since the matrix A is symmetric only its upper half or lower half need to be stored. When Uplo is CblasUpper then the upper triangle and diagonal of A are used, and when Uplo is CblasLower then the lower triangle and diagonal of A are used.

ssyr

This function computes the symmetric rank-1 update A = \alpha x x^T + A of the symmetric matrix A. Since the matrix A is symmetric only its upper half or lower half need to be stored. When Uplo is CblasUpper then the upper triangle and diagonal of A are used, and when Uplo is CblasLower then the lower triangle and diagonal of A are used.

ssyr2

These functions compute the symmetric rank-2 update A = \alpha x y^T + \alpha y x^T + A of the symmetric matrix A. Since the matrix A is symmetric only its upper half or lower half need to be stored. When Uplo is CblasUpper then the upper triangle and diagonal of A are used, and when Uplo is CblasLower then the lower triangle and diagonal of A are used.

strmv

This function computes the matrix-vector product x = op(A) x for the triangular matrix A, where op(A) = A, A^T, A^H for TransA = CblasNoTrans, CblasTrans, CblasConjTrans. When Uplo is CblasUpper then the upper triangle of A is used, and when Uplo is CblasLower then the lower triangle of A is used. If Diag is CblasNonUnit then the diagonal of the matrix is used, but if Diag is CblasUnit then the diagonal elements of the matrix A are taken as unity and are not referenced.

strsv

This function computes inv(op(A)) x for x, where op(A) = A, A^T, A^H for TransA = CblasNoTrans, CblasTrans, CblasConjTrans. When Uplo is CblasUpper then the upper triangle of A is used, and when Uplo is CblasLower then the lower triangle of A is used. If Diag is CblasNonUnit then the diagonal of the matrix is used, but if Diag is CblasUnit then the diagonal elements of the matrix A are taken as unity and are not referenced.

zgemv

This function computes the matrix-vector product and sum y = \alpha op(A) x + \beta y, where op(A) = A, A^T, A^H for TransA = CblasNoTrans, CblasTrans, CblasConjTrans.

zgerc

This function computes the conjugate rank-1 update A = \alpha x y^H + A of the matrix A.

zgeru

This function computes the rank-1 update A = \alpha x y^T + A of the matrix A.

zhemv

These functions compute the matrix-vector product and sum y = \alpha A x + \beta y for the hermitian matrix A. Since the matrix A is hermitian only its upper half or lower half need to be stored. When Uplo is CblasUpper then the upper triangle and diagonal of A are used, and when Uplo is CblasLower then the lower triangle and diagonal of A are used. The imaginary elements of the diagonal are automatically assumed to be zero and are not referenced.

zher

These functions compute the hermitian rank-1 update A = \alpha x x^H + A of the hermitian matrix A. Since the matrix A is hermitian only its upper half or lower half need to be stored. When Uplo is CblasUpper then the upper triangle and diagonal of A are used, and when Uplo is CblasLower then the lower triangle and diagonal of A are used. The imaginary elements of the diagonal are automatically set to zero.

zher2

These functions compute the hermitian rank-2 update A = \alpha x y^H + \alpha^* y x^H + A of the hermitian matrix A. Since the matrix A is hermitian only its upper half or lower half need to be stored. When Uplo is CblasUpper then the upper triangle and diagonal of A are used, and when Uplo is CblasLower then the lower triangle and diagonal of A are used. The imaginary elements of the diagonal are automatically set to zero.

ztrmv

This function computes the matrix-vector product x = op(A) x for the triangular matrix A, where op(A) = A, A^T, A^H for TransA = CblasNoTrans, CblasTrans, CblasConjTrans. When Uplo is CblasUpper then the upper triangle of A is used, and when Uplo is CblasLower then the lower triangle of A is used. If Diag is CblasNonUnit then the diagonal of the matrix is used, but if Diag is CblasUnit then the diagonal elements of the matrix A are taken as unity and are not referenced.

ztrsv

This function computes inv(op(A)) x for x, where op(A) = A, A^T, A^H for TransA = CblasNoTrans, CblasTrans, CblasConjTrans. When Uplo is CblasUpper then the upper triangle of A is used, and when Uplo is CblasLower then the lower triangle of A is used. If Diag is CblasNonUnit then the diagonal of the matrix is used, but if Diag is CblasUnit then the diagonal elements of the matrix A are taken as unity and are not referenced.